218
Views
6
CrossRef citations to date
0
Altmetric
Articles

Elasto-inertial particle migration in a confined simple shear-flow of Giesekus viscoelastic fluids

, , &

References

  • Chiu, S. H., T. W. Pan, and R. Glowinski. 2018. A 3D DLM/FD method for simulating the motion of spheres in a bounded shear-flow of Oldroyd-B fluids. Computers and Fluids 172:661–73. doi:10.1016/j.compfluid.2018.02.006.
  • Choi, Y. J., and M. A. Hulsen. 2012. Alignment of particles in a confined shear flow of a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics 175–176:89–103. doi:10.1016/j.jnnfm.2012.02.003.
  • Choi, Y. J., M. A. Hulsen, and H. E. H. Meijer. 2010. An extended finite element method for the simulation of particulate viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics 165 (11–12):607–24. doi:10.1016/j.jnnfm.2010.02.021.
  • D'Avino, G., G. Romeo, M. M. Villone, F. Greco, P. A. Netti, and P. L. Maffettone. 2012. Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipe flow-focuser. Lab on a Chip 12 (9):1638–45. doi:10.1039/c2lc21154h.
  • D'Avino, G., F. Greco, and P. L. Maffettone. 2017. Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annual Review of Fluid Mechanics 49 (1):341–60. doi:10.1146/annurev-.fluid-010816-060150.
  • Glowinski, R., T. W. Pan, T. I. Hesla, and D. D. Joseph. 1999. A distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow 25 (5):755–94. doi:10.1016/S0301-9322(98)00048-2.
  • Hashemi, M. R., R. Fatehi, and M. T. Manzari. 2011. SPH simulation of interacting solid bodies suspended in a shear-flow of an Oldroyd-B fluid. Journal of Non-Newtonian Fluid Mechanics 166 (21–22):1239–52. doi:10.1016/j.jnnfm.2011.08.002.
  • Hwang, W. R., M. A. Hulsen, and H. E. H. Meijer. 2004. Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames. Journal of Non-Newtonian Fluid Mechanics 121 (1):15–33. doi:10.1016/j.jnnfm.2004.03.008.
  • Karimi, A., S. Yazdi, and A. Ardekani. 2013. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7 (2):21501. doi:10.1063/1.4799787.
  • Kulkarni, P. M., and J. F. Morris. 2008. Pair-sphere trajectories in finite Reynolds number shear-flow. Journal of Fluid Mechanics 596:413–35. doi:10.1017/S0022112007009627.
  • Leer, B. V. 1979. Towards the ultimate conservative difference scheme.V. A second-order sequel to Godunov's method. Journal of Computational Physics 32:101–36. doi:10.1016/0021-9991(79)90145-1.
  • Li, G., G. H. Mckinley, and A. M. Ardekani. 2015. Dynamics of particle migration in channel flow of viscoelastic fluids. Journal of Fluid Mechanics 785:486–505. doi:10.1017/jfm.2015.619.
  • Lin, Z. W., and T. Gao. 2019. Direct-forcing fictitious domain method for simulating non-Brownian active particles. Physical Review E 100 (1–1):013304. doi:10.1103/PhysRevE.100.013304.
  • Liu, B. R., J. Z. Lin, X. K. Ku, and Z. S. Yu. 2020. Particle migration in bounded shear flow of Giesekus fluids. Journal of Non-Newtonian Fluid Mechanics 276:104233. doi:10.1016/j.jnnfm.2020.104233.
  • Liu, C., and G. Hu. 2017. High-throughput particle manipulation based on hydrodynamic effects in microchannels. Micromachines 8 (3):73. doi:10.3390/mi80300.
  • Lyon, M. K., D. W. Mead, R. E. Elliott, and L. G. Leal. 2001. Structure formation in moderately concentrated viscoelastic suspensions in simple shear-flow. Journal of Rheology 45 (4):881–90. doi:10.1122/1.1381008.
  • Mrinal, K. R., M. H. Siddique, and A. Samad. 2018. Performance prediction of a centrifugal pump delivering non-Newtonian slurry. Particulate Science and Technology 36 (1):38–45. doi:10.1080/02726351.2016.1205690.
  • Nie, D. M., and J. Z. Lin. 2015. Behavior of three circular particles in a confined power-law fluid under shear. Journal of Non-Newtonian Fluid Mechanics 221:76–94. doi:10.1016/j.jnnfm.2015.04.004.
  • Pamme, N. 2007. Continuous flow separations in microfluidic devices. Lab Chip 7 (12):1644–59. doi:10.1039/b712784g.
  • Petit, L., and B. Noetinger. 1988. Shear-induced structures in macroscopic dispersions. Rheologica Acta 27 (4):437–41. doi:10.1007/BF01332166.
  • Rushd, S., I. Hassan, R. A. Sultan, V. C. Kelessidis, A. Rahman, H. S. Hasan, and A. Hasan. 2019. Terminal settling velocity of a single sphere in drilling fluid. Particulate Science and Technology 37 (8):939–48. doi:10.1080/02726351.2018.1472162.
  • Snijkers, F., G. D’Avino, P. L. Maffettone, F. Greco, M. A. Hulsen, and J. Vermant. 2011. Effect of viscoelasticity on the rotation of a sphere in shear-flow. Journal of Non-Newtonian Fluid Mechanics 166 (7–8):363–72. doi:10.1016/j.jnnfm.2011.01.004.
  • Snijkers, F., R. Pasquino, and J. Vermant. 2013. Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow. Langmuir: The ACS Journal of Surfaces and Colloids 29 (19):5701–13. doi:10.1021/la4006604.
  • Stickel, J. J., and R. L. Powell. 2005. Fluid mechanics and rheology of dense suspensions. Annual Review of Fluid Mechanics 37 (1):129–49. doi:10.1146/annurev.fluid.36.050802.122132.
  • Villone, M., M. D’Avino, G. M. A. Hulsen, F. Greco, and P. L. Maffettone. 2011a. Numerical simulations of particle migration in a viscoelastic fluid subjected to Poiseuille flow. Computers and Fluids 42 (1):82–91. doi:10.1016/j.compfluid.2010.11.009.
  • Villone, M. M., G. D’Avino, M. A. Hulsen, F. Greco, and P. L. Maffettone. 2011b. Simulations of viscoelasticity- induced focusing of particles in pressure-driven micro-slit flow. Journal of Non-Newtonian Fluid Mechanics 166 (23–24):1396–405. doi:10.1016/j.jnnfm.2011.09.003.
  • Villone, M. M., G. D’Avino, M. A. Hulsen, F. Greco, and P. L. Maffettone. 2013. Particle motion in square channel flow of a viscoelastic liquid: Migration vs. secondary flows. Journal of Non-Newtonian Fluid Mechanics 195:1–8. doi:10.1016/j.jnnfm.2012.12.006.
  • Vlasak, P., and Z. Chara. 2009. Conveying of solid particles in Newtonian and non-Newtonian carriers. Particulate Science and Technology 27 (5):428–43. doi:10.1080/02726350903130019.
  • Yan, Y. G., J. F. Morris, and J. Koplik. 2007. Hydrodynamic interaction of two particles in confined linear shear-flow at finite Reynolds number. Physics of Fluids 19 (11):113305. doi:10.1063/1.2786478.
  • Yang, S., J. Y. Kim, S. J. Lee, S. S. Lee, and J. M. Kim. 2011. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab on a Chip 11 (2):266–73. doi:10.1039/c0lc00102c.
  • Yoon, S., M. A. Walkley, and O. G. Harlen. 2012. Two particle interactions in a confined viscoelastic fluid under shear. Journal of Non-Newtonian Fluid Mechanics. 185–186:39–48. doi:10.1016/j.jnnfm.2012.07.003.
  • Yu, Z., N. Phan-Thien, and R. I. Tanner. 2007. Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 76 (2 Pt 2):026310. doi:10.1103/PhysRevE.76.026310.
  • Yu, Z., and X. Shao. 2007. A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics 227 (1):292–314. doi:10.1016/j.jcp.2007.07.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.