292
Views
3
CrossRef citations to date
0
Altmetric
Articles

Microwave assisted limestone grinding

References

  • Adewuyi, S. O., H. A. M. Ahmed, and H. M. A. Ahmed. 2020. Methods of ore pretreatment for comminution energy reduction. Minerals 10 (5):423. doi:10.3390/min10050423.
  • Akkaya, B., İ. Toroğlu, and M. Bilen. 2020. Studying the effect of different operation parameters on the grinding energy efficiency in laboratory stirred mill. Advanced Powder Technology 31 (11):4517–25. doi:10.1016/j.apt.2020.09.026.
  • ASTM C1271 – 99. 2012. Standard test method for x-ray spectrometric analysis of lime and limestone.
  • Aunela-Tapola, L., E. Hatanpää, H. Hoffren, T. Laitinen, K. Larjava, P. Rasila, and M. Tolvanen. 1998. A study of trace element behaviour in two modern coal-fired power plants: II. Trace element balances in two plants equipped with semi-dry flue gas desulphurization facilities. Fuel Processing Technology 55 (1):13–34. doi:10.1016/S0378-3820(97)00053-2.
  • Austin, L. G., and P. Bagga. 1981. An analysis of fine dry grinding in ball mills. Powder Technology 28 (1):83–90. doi:10.1016/0032-5910(81)87014-3.
  • Bilen, M., S. Kizgut, A. Cuhadaroglu, S. Yilmaz, and I. Toroglu. 2017. Coal grindability and breakage parameters. International Journal of Coal Preparation and Utilization 37 (5):279–84. doi:10.1080/19392699.2016.1173686.
  • Bilen, M., S. Kizgut, S. Yilmaz, K. Baris, and D. Cuhadaroglu. 2018. Grindability of coal changing with burial depth. International Journal of Coal Preparation and Utilization 38 (2):75–87. doi:10.1080/19392699.2016.1196199.
  • Chen, Z., and Z. Jiang. 1997. Investigations on desulfurization by activated carbon II reaction mechanism of SO2 oxidation with existence of water vapor. Acta Scientiae Circumstantiae 17 (3):273–7.
  • Chen, Z., Z. Jiang, and W. Yuan. 1997. Investigations on desulfurization by activated carbon I reaction kinetics of SO2 oxidation for SO2-N2-O2 system. Acta Scientiae Circumstantiae 17 (3):268–72.
  • Choi, W. S., H. Y. Chung, B. R. Yoon, and S. S. Kim. 2001. Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill. Powder Technology 115 (3):209–14. doi:10.1016/S0032-5910(00)00341-7.
  • Clarke, L. 1993. The fate of trace elements during combustion and gasification: An overview. Fuel 72 (6):731–6. doi:10.1016/0016-2361(93)90072-A.
  • Cordoba, P. 2015. Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel 144 (15):274–86. doi:10.1016/j.fuel.2014.12.065.
  • Cuhadaroglu, A. D., and E. Kara. 2016. The investigation of breakage kinetics of vitrified sanitary ware wastes in laboratory scale ball and stirred mills. Particulate Science and Technology 34 (1):9–16. doi:10.1080/02726351.2015.1029601.
  • Cuhadaroglu, A. D., S. Kizgut, S. Yilmaz, and Y. Zorer. 2013. Characterization of the grinding behavior of binary mixtures of clinker and colemanite. Particulate Science and Technology 31 (6):596–602. doi:10.1080/02726351.2013.806974.
  • Cuhadaroglu, D., A. A. Sirkeci, M. Bilen, S. Kizgut, S. Yilmaz, and C. E. Yilmaz. 2017. Effect of ash reduction on the grindability of some Turkish brown coals. IMCET: New Trends in Mining – Proceedings of 25th International Mining Congress of Turkey TMMOB Maden Muhendisleri Odasi. Antalya Turkey.
  • De Gisi, S., A. Molino, and M. Notarnicola. 2017. Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: A feasibility study. Process Safety and Environmental Protection 109:117–29. doi:10.1016/j.psep.2017.03.033.
  • Deniz, V. 2004. Relationships between Bond's grindability (Gbg) and breakage parameters of grinding kinetic on limestone. Powder Technology 139 (3):208–13. doi:10.1016/j.powtec.2003.11.006.
  • Dongdong, L., H. Zhengkai, Z. Xiaoma, S. Rui, F. Weizhi, L. Song, and J. Boyin. 2019. Effect of physical and mechanical activation on the physicochemical structure of coal-based activated carbons for SO2 adsorption. Processes 7 (10):707. doi:10.3390/pr7100707.
  • Gedik, İ., M. Duru, Ş. Pehlivan, and E. Timur. 2005. 1/50.000 ölçekli Türkiye Jeoloji haritaları, İstanbul-F22c Paftası, MTA Raporu, No: 11, Ankara.
  • Gholami, H., R. Bahram, H. Ahmad, M. Akbar, and B. J. Majid. 2020. The effect of microwave’s location in a comminution circuit on improving grindability of a porphyry copper deposit. Energy Sources Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1753859.
  • Gonul, H. I., and M. Bilen. 2020. Modeling absorbers in WFGD system and prediction of SO2 removal rate based on size parameters. The Journal of Energy Resources Technology 142:1–27. doi:10.1115/1.4046384.
  • Guzzo, P. L., J. B. Santos, and R. C. David. 2014. Particle size distribution and structural changes in limestone ground in planetary ball mill. International Journal of Mineral Processing 126 (10):41–8. doi:10.1016/j.minpro.2013.11.005.
  • Hartlieb, P., M. Leindl, F. Kuchar, T. Antretter, and P. Moser. 2012. Damage of basalt induced by microwave irradiation. Minerals Engineering. 31:82–9. doi:10.1016/j.mineng.2012.01.011.
  • Hassani, F., and P. Nekoovaght. 2011. The development of microwave assisted machineries to break hard rocks. ISARC 2011: The 28th International Symposium on Automation and Robotics in Construction. doi:10.22260/ISARC2011/0127.
  • Heebink, L. V., and D. J. Hassett. 2003. Hg release from FGD. Proceeding of International Ash Utilization Symposium CAER 75, University of Kentucky.
  • Hoşten, Ç., and M. Gülsün. 2004. Reactivity of limestones from different sources in Turkey. Minerals Engineering 17 (1):97–9. doi:10.1016/j.mineng.2003.10.009.
  • Kikkawa, H., T. Nakamoto, M. Morishita, and K. Yamada. 2002. New wet FGD process using granular limestone. Industrial & Engineering Chemistry Research 41 (12):3028–36. doi:10.1021/ie0109760.
  • Kolat, P., B. Čech, M. Vrtek, and D. Tomášek. 2013. Experiments on additive desulphurisation by sodium bicarbonate in coal-fuel boilers. Chemical and Process Engineering 34 (1):77–86. doi:10.2478/cpe-2013-0007.
  • Kumar, P., B. K. Sahoo, S. De, D. D. Kar, S. Chakraborty, and B. C. Meikap. 2010. Iron ore grind ability improvement by microwave pre-treatment. Journal of Industrial and Engineering Chemistry 16 (5):805–12. doi:10.1016/j.jiec.2010.05.008.
  • Lester, E., and S. Kingman. 2004. The effect of microwave pre-heating on five different coals. Fuel 83 (14-15):1941–7. doi:10.1016/j.fuel.2004.05.006.
  • Li, K. Q., G. Chen, J. Chen, J. H. Peng, R. Ruan, and C. Srinivasakannan. 2019. Microwave pyrolysis of walnut shell for reduction process of low-grade pyrolusite. Bioresource Technology. 291:121838. doi:10.1016/j.biortech.2019.121838.
  • Li, K. Q., J. Chen, G. Chen, J. H. Peng, R. Ruan, and C. Srinivasakannan. 2019. Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore. Bioresource Technology. 286:121381. doi:10.1016/j.biortech.2019.121381.
  • Li, K. Q., J. Chen, L. Gao, J. Peng, Q. Chen, S. Koppala, M. Omran, and J. Chen. 2021. Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends. Bioresource Technology. 319:124172. doi:10.1016/j.biortech.2020.124172.
  • Li, K. Q., G. Chen, X. T. Li, J. H. Peng, R. Ruan, M. Omran, and J. Chen. 2019. High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field. Bioresource Technology. 294:122217. doi:10.1016/j.biortech.2019.122217.
  • Li, K., J. Chen, J. Peng, M. Omran, and G. Chen. 2020. Efficient improvement for dissociation behavior and thermal decomposition of manganese ore by microwave calcination. Journal of Cleaner Production 260:121074. doi:10.1016/j.jclepro.2020.121074.
  • Li, K. Q., J. Chen, J. H. Peng, R. Ruan, M. Orman, and G. Chen. 2020. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field. Journal of Hazardous Materials. 381:121227. doi:10.1016/j.jhazmat.2019.121227.
  • Li, K. Q., J. Chen, J. H. Peng, R. Ruan, C. Srinivasakannan, and G. Chen. 2020. Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating. Powder Technology 360:846–54. doi:10.1016/j.powtec.2019.11.015.
  • Li, K. Q., Q. Jiang, J. Chen, J. H. Peng, X. P. Li, S. Koppala, M. Omran, and G. Chen. 2020. The controlled preparation and stability mechanism of partially stabilized zirconia by microwave intensification. Ceramics International. 46 (6):7523–30. doi:10.1016/j.ceramint.2019.11.251.
  • Li, K. Q., Q. Jiang, L. Gao, J. Chen, J. H. Peng, S. Koppala, M. Omran, and G. Chen. 2020. Investigations on the microwave absorption properties and thermal behavior of vanadium slag: Improvement in microwave oxidation roasting for recycling vanadium and chromium. Journal of Hazardous Materials. 395:122698. doi:10.1016/j.jhazmat.2020.122698.
  • Lindroth, D. P., R. J. Morrell, and J. R. Blair. 1991. Microwave assisted hard rock cutting. Google Patents.
  • Liu, S., W. Xiao, P. Liu, and Z. Ye. 2008. Feasibility study of new limestone flue gas desulfurization process. Clean 36 (5–6):482–7. doi:10.1002/clen.200700106.
  • Li, B., Q. Zhang, and C. Ma. 2018. Adsorption kinetics of SO2 on powder activated carbon. IOP Conference Series: Earth and Environmental Science 121:022019.022019. doi:10.1088/1755-1315/121/2/:.
  • Liu, S., X. Gao, F. Cao, Z. Luo, and K. Cen. 2012. Effect of pore structure on SO2 removal by activated carbons. Proceedings of the CSEE 32:46–52. doi:10.1109/APPEEC.2010.5448229.
  • Marland, S., Han, B. A. Merchant, A., and N. Rowson. 2000. The effect of microwave radiation on coal grindability. Fuel 79 (11):1283–8. doi:10.1016/S0016-2361(99)00285-9.
  • Matijašić, G., K. Žižek, U. Sofilić, V. Mandić, and H. Skopal. 2009. Wet comminution kinetics of dolomite at laboratory scale. Chemical Engineering and Processing: Process Intensification. 48 (4):846–85. doi:10.1016/j.cep.2008.10.010.
  • Mio, H., J. Kano, F. Saito, and K. Kantaro. 2004. Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball mill Scale-up method of planetary ball mill. Materials Science Engineering. 59 (24):5909–16. doi:10.1016/j.ces.2004.07.020.
  • Mochida, I., Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa, and A. Yasutake. 2000. Removal of SOx and NOx over activated carbon fibers. Carbon 38 (2):227–39. doi:10.1016/S0008-6223(99)00179-7.
  • Nejati, H. 2014. Analysis of physical properties and thermo—mechanical induced fractures of rocks subjected to microwave radiation. Montreal: McGill.
  • Nekoovaght, P. M. 2009. An investigation on the influence of microwave energy on basic mechanical properties of hard rocks. PhD thesis, Concordia University, Montreal, Canada.
  • Omran, M., T. Fabritius, and R. Mattila. 2015. Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology 269:7–14. doi:10.1016/j.powtec.2014.08.073.
  • Ozer, C. E., and W. J. Whiten. 2012. A multi-component appearance function for the breakage of coal. International Journal of Mineral Processing 104-105:37–44. doi:10.1016/j.minpro.2011.11.014.
  • Prusti, P., K. Barik, N. Dash, S. K. Biswal, and B. C. Meikap. 2021. Effect of limestone and dolomite flux on the quality of pellets using high LOI iron ore. Powder Technology 379:154–64. doi:10.1016/j.powtec.2020.10.063.
  • Raclavska, H., D. Matysek, K. Raclavsky, and D. Juchelkova. 2010. Geochemistry of fly ash from desulphurisation process performed by sodium bicarbonate. Fuel Processing Technology 91 (2):150–7. doi:10.1016/j.fuproc.2009.09.004.
  • Ruisanchez, E., A. Arenillas, E. J. Juarez Perez, and J. A. Menendez. 2012. Pulses of microwave radiation to improve. Fuel 102:65–71. doi.org/10.1016/j.fuel.2012.07.030. doi:10.1016/j.fuel.2012.07.030.
  • Samanli, S., D. Cuhadaroglu, and J. Y. Hwang. 2011. An investigation of particle size variation in stirred mills in terms of breakage kinetics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (6):549–61. doi:10.1080/15567030903117620.
  • Samanli, S. 2011. A comparison of the results obtained from grinding in a stirred media mill lignite coal samples treated with microwave and untreated samples. Fuel 90 (2):659–64. doi:10.1016/j.fuel.2010.10.014.
  • Sánchez, E. C., E. Torres, C. Diaz, and F. Saito. 2004. Effects of grinding of the feldspar in the sintering using a planetary ball mill. Journal of Materials Processing Technology. 152 (3):284–90. doi:10.1016/j.jmatprotec.2004.04.367.
  • Santamarina, J. C. 1989. Rock excavation with microwaves: A literature review. In Foundation Engineering Conference, ed. F. H. Kulhawy, 459–73. Evanston, IL: ASCE.
  • Schroeder, K., and C. Kairies. 2005. Distribution of Hg in FGD by-products. Proceedings of World of Coal Ash Conference, CAER, University of Kentucky, April 11–1. Paper 100.
  • Silva, M., and A. Casali. 2015. Modeling SAG milling power and specific energy consumption including the feed percentage of intermediate size particles. Mining Engineering. 70:156–61. doi:10.1016/j.mineng.2014.09.013.
  • Singh, V., P. Dixit, R. Venugopal, and K. B. Venkatesh. 2019. Ore pretreatment methods for grinding: Journey and prospects. Mineral Processing and Extractive Metallurgy Review 40 (1):1–15. doi:10.1080/08827508.2018.1479697.
  • Soud, H. N. 2000. Developments in FGD. CCC/29. London: IEA Coal Research.
  • Sumathi, S., S. Bhatia, K. Lee, and A. Mohamed. 2010. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx. Journal of Hazardous Materials 176 (1–3):1093–6. doi:10.1016/j.jhazmat.2009.11.037.
  • Tavares, L. M. M., and A. T. Kreischer. 2004. Análise da taxa de quebra na moagem a seco em moinho de bolas planetário. Proc. 22th Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, 233–40. (In Portuguese).
  • Teke, E., M. Yekeler, U. Ulusoy, and M. Canbazoglu. 2002. Kinetics of dry grinding of industrial minerals: Calcite and barite. International Journal of Mineral Processing. 67 (1–4):29–42. doi:10.1016/S0301-7516(02)00006-6.
  • Toifl, M., R. Meisels, P. Hartlieb, F. Kuchar, and T. Antretter. 2016. 3D numerical study on microwave induced stresses in inhomogeneous hard rocks. Minerals Engineering. 90:29–42. doi:10.1016/j.mineng.2016.01.001.
  • Toraman, O. Y., and M. S. Delibalta. 2015. The influence of microwave preheating on grindability of low rank Turkish coal using impact strength index (ISI). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (19):2131–7. doi:10.1080/15567036.2012.684087.
  • Vivekanand, G., R. Asthana, and N. Verma. 2006. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O. Carbon 44 (1):46–60. doi:10.1016/j.carbon.2005.07.012.
  • Walawska, B., A. Szymanek, A. Pajdak, and M. Nowak. 2014. Flue gas desulfurization by mechanically and thermally activated sodium bicarbonate. Polish Journal of Chemical Technology 16 (3):56–62. doi:10.2478/pjct-2014-0051.
  • Xia, W.-C., J.-G. Yang, and B. Zhu. 2014. The improvement of grindability and floatability of oxidized coal by microwave pre-treatment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (1):23–30. doi:10.1080/15567036.2011.653621.
  • Yilmaz, S. 2019. A new approach for the testing method of coal grindability. Advanced Powder Technology 30 (9):1932–40. doi:10.1016/j.apt.2019.06.012.
  • Yu, J-w, Y-x Han, Y-j Li, and P. Gao. 2016. Effect of magnetic pulse pretreatment on grindability of a magnetite ore and its implication on magnetic separation. Journal of Central South University 23 (12):3108–14. doi:10.1007/s11771-016-3376-6.
  • Zheng, Y. L., Q. B. Zhang, and J. Zhao. 2017. Effect of microwave treatment on thermal and ultrasonic properties of gabbro. Applied Thermal Engineering 127 (25):359–69. doi:10.1016/j.applthermaleng.2017.08.060.
  • Zhu, X., T. Youjun, and S. Qixiao. 2016. Effects of microwave pretreatment on the grinding characteristic of coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (18):2741–8. doi:10.1080/15567036.2015.1112861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.