194
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Terminal settling velocity for binary irregularly shaped particle mixture from fluidization study: experiment, empirical correlation, and GA-ANN modeling

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Arabi, A. S., and R. S. Sanders. 2016. Particle terminal settling velocities in non-Newtonian viscoplastic fluids. The Canadian Journal of Chemical Engineering 94 (6):1092–101. doi: 10.1002/cjce.22496.
  • Banerjee, M., N. Bar, R. K. Basu, and S. K. Das. 2018. Removal of Cr(VI) from its aqueous solution using green adsorbent pistachio shell: A fixed bed column study and GA-ANN modeling. Water Conservation Science and Engineering 3 (1):19–31. doi: 10.1007/s41101-017-0039-x.
  • Basu, J., and S. K. Ghosal. 1974. Velocity voidage relationship in fluidizing and sedimenting beds. Indian Chemical Engineer XIV:T52–T58.
  • Brown, P. P., and D. F. Lawler. 2003. Sphere drag and settling velocity revisited. Journal of Environmental Engineering 129 (3):222–31. doi: 10.1061/(ASCE)0733-9372(2003)129:3(222).
  • Cheng, N. S. 1997. A simplified settling velocity formula for sediment particle. Journal of Hydraulic Engineering 123 (2):149–52. doi: 10.1061/(ASCE)0733-9429(1997)123:2(149).
  • Chhabra, R. P., and S. S. Peri. 1991. Simple method for the estimation of free-fall velocity of spherical particles in power law liquids. Powder Technology 67 (3):287–90. doi: 10.1016/0032-5910(91)80110-5.
  • Das, A., N. Bar, and S. K. Das. 2020. Pb(II) adsorption from aqueous solution by nutshells, green adsorbent: Adsorption studies, regeneration studies, scale-up design, its effect on biological indicator and MLR modeling. Journal of Colloid and Interface Science 580:245–55. doi: 10.1016/j.jcis.2020.07.017.
  • Erkova, L. N., and N. I. Smirnov. 1958. Encyclopedia of fluid mechanics (ed. N. P. Cheremisinoff). Houston, TX: Gulf Publishing Company.
  • Ganguly, U. P. 1990. On the prediction of terminal settling velocity of solids in liquid-solid systems. International Journal of Mineral Processing 29 (3–4):235–47. doi: 10.1016/0301-7516(90)90056-5.
  • Ghosh, I., S. Kar, T. Chatterjee, N. Bar, and S. K. Das. 2021. Adsorptive removal of Safranin-O dye from aqueous medium using coconut coir and its acid-treated forms: Adsorption study, scale-up design, MPR and GA-ANN modeling. Sustainable Chemistry and Pharmacy 19:100374. doi: 10.1016/j.scp.2021.100374.
  • Ghosh, K., N. Bar, A. B. Biswas, and S. K. Das. 2021. Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustainable Chemistry and Pharmacy 19:100370. doi: 10.1016/j.scp.2020.100370.
  • Ghosh, K., N. Bar, A. B. Biswas, and S. K. Das. 2019. Removal of methylene blue (aq) using untreated and acid-treated eucalyptus leaves and GA-ANN modelling. The Canadian Journal of Chemical Engineering 97 (11):2883–98. doi: 10.1002/cjce.23503.
  • Goroshko, V. D., R. B. Rosenbaum, and O. M. Todes. 1987. Encyclopedia of fluid mechanics (ed. N. P. Cheremisinoff). Houston, TX: Gulf Publishing Company.
  • Haider, A., and O. Levenspiel. 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology 58 (1):63–70. doi: 10.1016/0032-5910(89)80008-7.
  • Haldurai, L., T. Madhubala, and R. Rajalakshmi. 2016. A study on genetic algorithm and its applications. International Journal of Computer Sciences and Engineering 4:5.
  • Hartman, M., O. Trnka, and K. Svoboda. 1994. Free settling of nonspherical particles. Industrial & Engineering Chemistry Research 33 (8):1979–83. doi: 10.1021/ie00032a012.
  • Kashiwaya, K., T. Noumachi, N. Hiroyoshi, M. Ito, and M. Tsunekawa. 2012. Effect of particle shape on hydrocyclone classification. Powder Technology 226:147–56. doi: 10.1016/j.powtec.2012.04.036.
  • Kawase, Y., and J. J. Ulbrecht. 1981. Sedimentation of particles in non-Newtonian fluids. Chemical Engineering Communications 13 (1–3):55–64. doi: 10.1080/00986448108910896.
  • Kelessidis, V. C., and G. Mpandelis. 2004. Measurements and prediction of terminal velocity of solid spheres falling through stagnant pseudoplastic liquids. Powder Technology 147 (1–3):117–25. doi: 10.1016/j.powtec.2004.09.034.
  • Khan, A. R., and J. F. Richardson. 1987. The resistance to motion of a solid sphere in a fluid. Chemical Engineering Communications 62 (1–6):135–50. doi: 10.1080/00986448708912056.
  • Let, S., N. Bar, R. K. Basu, and S. K. Das. 2022. Minimum fluidization velocities of binary solid mixtures: Empirical correlation and genetic algorithm-artificial neural network modeling. Chemical Engineering & Technology 45 (1):73–82. doi: 10.1002/ceat.202100170.
  • Madhav, G. V., and R. P. Chhabra. 1995. Drag on non-spherical particles in viscous fluids. International Journal of Mineral Processing 43 (1–2):15–29. doi: 10.1016/0301-7516(94)00038-2.
  • Maiti, S. B., N. Bar, and S. K. Das. 2021. Terminal settling velocity of solids in the pseudoplastic non-Newtonian liquid system – Experiment and ANN modeling. Chemical Engineering Journal Advances 7:100136. doi: 10.1016/j.ceja.2021.100136.
  • Maiti, S. B., N. Bar, and S. K. Das. 2020. Bed expansion in two-phase liquid–solid fluidized beds with non-Newtonian fluids and ANN modelling. In Proceedings of the global AI congress 2019, advances in intelligent systems and computing, ed. J. K. Mandal and S. Mukhopadhyay, 33–45. Singapore: Springer. doi: 10.1007/978-981-15-2188-1_3.
  • Maiti, S. B., S. Let, N. Bar, and S. K. Das. 2018. Non-spherical solid-non-Newtonian liquid fluidization and ANN modelling: Minimum fluidization velocity. Chemical Engineering Science 176:233–41. doi: 10.1016/j.ces.2017.10.050.
  • Mandal, A., N. Bar, and S. K. Das. 2020. Phenol removal from wastewater using low-cost natural bioadsorbent neem (Azadirachta indica) leaves: Adsorption study and MLR modeling. Sustainable Chemistry and Pharmacy 17:100308. doi: 10.1016/j.scp.2020.100308.
  • Mikhailov, M. D., and A. P. S. Freire. 2013. The drag coefficient of a sphere: An approximation using Shanks transform. Powder Technology 237:432–5. doi: 10.1016/j.powtec.2012.12.033.
  • Nag, S., N. Bar, and S. K. Das. 2020. Cr(VI) removal from aqueous solution using green adsorbents in continuous bed column – Statistical and GA-ANN hybrid modelling. Chemical Engineering Science 226:115904. doi: 10.1016/j.ces.2020.115904.
  • Nag, S., N. Bar, and S. K. Das. 2019. Sustainable bioremadiation of Cd(II) in fixed bed column using green adsorbents: Application of Kinetic models and GA-ANN technique. Environmental Technology & Innovation 13:130–45. doi: 10.1016/j.eti.2018.11.007.
  • Nag, S., A. Mondal, D. N. Roy, N. Bar, and S. K. Das. 2018. Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling. Environmental Technology & Innovation 11:83–104. doi: 10.1016/j.eti.2018.04.009.
  • Pani, G. K., P. Rath, R. Barik, and P. K. Senapati. 2015. The effect of selective additives on the rheological behavior of power plant ash slurry. Particulate Science and Technology 33 (4):418–22. doi: 10.1080/02726351.2014.990657.
  • Rooki, R., F. Doulati Ardejani, A. Moradzadeh, V. C. Kelessidis, and M. Nourozi. 2012. Prediction of terminal velocity of solid spheres falling through Newtonian and non-Newtonian pseudoplastic power law fluid using artificial neural network. International Journal of Mineral Processing 110–111:53–61. doi: 10.1016/j.minpro.2012.03.012.
  • Rushd, S., N. Hafsa, M. Al-Faiad, and M. Arifuzzaman. 2021. Modeling the settling velocity of a sphere in Newtonian and non-Newtonian fluids with machine-learning algorithms. Symmetry 13 (1):71. doi: 10.3390/sym13010071.
  • Rushd, S., I. Hassan, R. A. Sultan, V. C. Kelessidis, A. Rahman, H. S. Hasan, and A. Hasan. 2019. Terminal settling velocity of a single sphere in drilling fluid. Particulate Science and Technology 37 (8):943–52. doi: 10.1080/02726351.2018.1472162.
  • Rushd, S., M. T. Parvez, M. A. Al-Faiad, and M. M. Islam. 2021. Towards optimal machine learning model for terminal settling velocity. Powder Technology 387:95–107. doi: 10.1016/j.powtec.2021.04.011.
  • Saha, G., N. K. Purohit, and A. K. Mitra. 1992. Spherical particle terminal settling velocity and drag in Bingham liquids. International Journal of Mineral Processing 36 (3–4):273–81. doi: 10.1016/0301-7516(92)90049-3.
  • Tsakalakis, K. G., and G. A. Stamboltzis. 2001. Prediction of the settling velocity of irregularly shaped particles. Minerals Engineering 14 (3):349–57. doi: 10.1016/S0892-6875(01)00006-1.
  • Wen, C. Y., and L. S. Fan. 1974. Some remarks on the correlation of bed expansion in liquid-solid fluidized beds. Industrial & Engineering Chemistry Process Design and Development 13 (2):194–7. doi: 10.1021/i260050a017.
  • Wicke, E., and S. K. Hedden. 1952. Strömungsformen und Wärmeübertragung in von Luft aufgewirbelten Schüttgutschichten. Chemie Ingenieur Technik 24 (2):82–91. doi: 10.1002/cite.330240205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.