277
Views
3
CrossRef citations to date
0
Altmetric
Review

Pulsation-assisted fluidised bed drying of heat-sensitive and sticky materials: effect of basic parameter, and pulsation-specific parameter

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Abbasi Souraki, B., and D. Mowla. 2008. Experimental and theoretical investigation of drying behaviour of garlic in an inert medium fluidized bed assisted by microwave. Journal of Food Engineering 88 (4):438–49. doi:10.1016/j.jfoodeng.2007.12.034.
  • Ahmadi Motlagh, A. H., K. Palanisamy, K. Pougatch, M. Salcudean, J. R. Grace, D. Grecov, and J. McMillan. 2019. Mechanistic model to simulate wet agglomerate breakage in a gas-solid fluidized bed. Chemical Engineering Science 195:995–1009. doi:10.1016/j.ces.2018.10.045.
  • Akhavan, A., F. Rahman, S. Wang, and M. Rhodes. 2015. Enhanced fluidization of nanoparticles with gas phase pulsation assistance. Powder Technology 284:521–9. doi:10.1016/j.powtec.2015.07.004.
  • Ali, S. S., and M. Asif. 2012. Fluidization of nano-powders: effect of flow pulsation. Powder Technology 225:86–92. doi:10.1016/j.powtec.2012.03.035.
  • Ali, S. S., E. H. Al-Ghurabi, A. Ajbar, Y. A. Mohammed, M. Boumaza, and M. Asif. 2016. Effect of frequency on pulsed fluidized beds of ultrafine powders. Journal of Nanomaterials 2016:1–12. doi:10.1155/2016/4592501.
  • Arumuganathan, T., M. R. Manikantan, R. D. Rai, S. Anandakumar, and V. Khare. 2009. Mathematical modeling of drying kinetics of milky mushroom in a fluidized bed dryer. International Agrophysics 23 (1):1–7.
  • Askari, G. R., Z. Emam-Djomeh, and S. M. Mousavi. 2013. Heat and mass transfer in apple cubes in a microwave-assisted fluidized bed drier. Food and Bioproducts Processing 91 (3):207–15. doi:10.1016/j.fbp.2012.09.007.
  • Aworinde, S. M., D. J. Holland, and J. F. Davidson. 2015. Investigation of a swirling flow nozzle for a fluidised bed gas distributor. Chemical Engineering Science 132:22–31. doi:10.1016/j.ces.2015.04.001.
  • Barathiraja, R., P. Thirumal, G. Saraswathy, and I. Rahamathullah. 2021. Drying of Turkey berry in a fluidized bed dryer with mild steel, copper and aluminum inert materials: kinetics and quality determination. Journal of Mechanical Science and Technology 35 (6):2707–17. doi:10.1007/s12206-021-0541-0.
  • Bareschino, P., A. Marzocchella, and P. Salatino. 2017. Fluidised bed drying of powdered materials: effects of operating conditions. Powder Technology 308:158–64. doi:10.1016/j.powtec.2016.11.069.
  • Bhandari, B. R., N. Datta, and T. Howes. 1997. Problems associated with spray drying of sugar-rich foods. Drying Technology 15 (2):671–84. doi:10.1080/07373939708917253.
  • Camino-Sánchez, F. J., H. López-López, and J. M. Gutierrez-Rodríguez. 2020. The development and application of sticky-point models to spray drying processes for the manufacturing of nutritional powder products and infant formulas. Journal of Food Engineering 279:109947. doi:10.1016/j.jfoodeng.2020.109947.
  • Caparino, O. A., C. I. Nindo, J. Tang, and S. S. Sablani. 2017. Rheological measurements for characterizing sticky point temperature of selected fruit powders: an experimental investigation. Journal of Food Engineering 195:61–72. doi:10.1016/j.jfoodeng.2016.09.010.
  • Chuwattanakul, V., K. Banthumporn, P. Promvonge, and S. Eiamsa-ard. 2018. Drying peppercorn characteristics in fluidized bed dryer equipped with baffle vortex generators. IOP Conference Series: Earth and Environmental Science 136 (1):012020. doi:10.1088/1755-1315/136/1/012020.
  • Dacanal, G. C., G. Feltre, M. G. Thomazi, and F. C. Menegalli. 2016. Effects of pulsating air flow in fluid bed agglomeration of starch particles. Journal of Food Engineering 181:67–83. doi:10.1016/j.jfoodeng.2016.03.004.
  • Darvishi, H., M. H. Khoshtaghaza, and S. Minaei. 2015. Effects of fluidized bed drying on the quality of soybean kernels. Journal of the Saudi Society of Agricultural Sciences 14 (2):134–9. doi:10.1016/j.jssas.2013.09.002.
  • Darvishi, H., M. Azadbakht, and B. Noralahi. 2018. Experimental performance of mushroom fluidized-bed drying: effect of osmotic pretreatment and air recirculation. Renewable Energy 120:201–8. doi:10.1016/j.renene.2017.12.068.
  • Erbay, Z., and F. Icier. 2010. A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition 50 (5):441–64. doi:10.1080/10408390802437063.
  • Flood, H. W. 1964. Fluidized bed drying of food: a new development in the drying, roasting, cooking and freezing of food. Cornell Hotel and Restaurant Administration Quarterly 5 (1):65–70. doi:10.1177/001088046400500115.
  • Gawrzynski, Z., R. Glaser, and T. Kudra. 1999. Drying of powdery materials in a pulsed fluid bed dryer. Drying Technology 17 (7–8):1523–32. doi:10.1080/07373939908917633.
  • Geldart, D. 1972. The effect of particle size and size distribution on the behaviour of gas-fluidised beds. Powder Technology 6 (4):201–15. doi:10.1016/0032-5910(72)83014-6.
  • Geldart, D. 1973. Types of gas fluidization. Powder Technology 7 (5):285–92. doi:10.1016/0032-5910(73)80037-3.
  • Giner, S. A., and A. de Michelis. 1988. Evaluation of the thermal efficiency of wheat drying in fluidized beds: influence of air temperature and heat recovery. Journal of Agricultural Engineering Research 41 (1):11–23. doi:10.1016/0021-8634(88)90199-0.
  • Goksu, E. I., G. Sumnu, and A. Esin. 2005. Effect of microwave on fluidized bed drying of macaroni beads. Journal of Food Engineering 66 (4):463–8. doi:10.1016/j.jfoodeng.2004.04.017.
  • Hajidavalloo, E., and F. Hamdullahpur. 2000. Thermal analysis of a fluidized bed drying process for crops. Part II: experimental results and model verification. International Journal of Energy Research 24 (9):809–20. doi:10.1002/1099-114X(200007)24:9<809::AID-ER626>3.0.CO;2-M.
  • Halim, L. A. F. Basrawi, J. Z. Chong, A. N. Oumer A. S. M. Yudin M. H. Bin Yusof, and S. A. Sulaiman. 2018. Preliminary study on drying of stingless bee pot pollen using novel fluidized bed dryer with swirling distributor. MATEC Web of Conferences 225:04007. doi:10.1051/matecconf/201822504007.
  • Hall, C. W. 1988. Handbook of industrial drying. Drying Technology 6 (3):571–3. doi:10.1080/00222338708074452.
  • Hashemi, G., D. Mowla, and M. Kazemeini. 2009. Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. Journal of Food Engineering 92 (3):331–8. doi:10.1016/j.jfoodeng.2008.12.004.
  • Hatamipour, M. S., and D. Mowla. 2002. Shrinkage of carrots during drying in an inert medium fluidized bed. Journal of Food Engineering 55 (3):247–52. doi:10.1016/S0260-8774(02)00082-1.
  • Hennigs, C., T. K. Kockel, and T. A. Langrish. 2001. New measurements of the sticky behavior of skim milk powder. Drying Technology 19 (3–4):471–84. doi:10.1081/DRT-100103929.
  • Holdich, R. G. 2002. Fundamentals of particle technology. Fundamentals of particle technology. Midland Information Technology and Publishing.
  • Inazu, T., K. I. Iwasaki, and T. Furuta. 2003. Effect of air velocity on fresh Japanese noodle (Udon) drying. Food Science and Technology 36 (2):277–80. doi:10.1016/S0023-6438(02)00185-8.
  • Ireland, E., K. Pitt, and R. Smith. 2016. A review of pulsed flow fluidisation; the effects of intermittent gas flow on fluidised gas-solid bed behaviour. Powder Technology 292:108–21. doi:10.1016/j.powtec.2016.01.018.
  • Jaiboon, P., S. Prachayawarakorn, S. Devahastin, and S. Soponronnarit. 2009. Effects of fluidized bed drying temperature and tempering time on quality of waxy rice. Journal of Food Engineering 95 (3):517–24. doi:10.1016/j.jfoodeng.2009.06.019.
  • Jia, D., O. Cathary, J. Peng, X. Bi, C. J. Lim, S. Sokhansanj, Y. Liu, R. Wang, and A. Tsutsumi. 2015. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow. Fuel Processing Technology 138:471–82. doi:10.1016/j.fuproc.2015.06.023.
  • Jia, D., X. Bi, C. J. Lim, S. Sokhansanj, and A. Tsutsumi. 2016. Biomass drying in a pulsed fluidized bed without inert bed particles. Fuel 186:270–84. doi:10.1016/j.fuel.2016.08.100.
  • Jia, D., X. Bi, C. J. Lim, S. Sokhansanj, and A. Tsutsumi. 2017. Gas-solid mixing and mass transfer in a tapered fluidized bed of biomass with pulsed gas flow. Powder Technology 316:373–87. doi:10.1016/j.powtec.2016.10.031.
  • Jia, D., X. Bi, C. J. Lim, S. Sokhansanj, and A. Tsutsumi. 2019. Heat transfer in a tapered fluidized bed of biomass particles with pulsed gas flow. Particuology 42:2–14. doi:10.1016/j.partic.2018.01.007.
  • Kaleta, A., K. Górnicki, R. Winiczenko, and A. Chojnacka. 2013. Evaluation of drying models of apple (Var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management 67:179–85. doi:10.1016/j.enconman.2012.11.011.
  • Khosravi Bizhaem, H., and H. Basirat Tabrizi. 2013. Experimental study on hydrodynamic characteristics of gas-solid pulsed fluidized bed. Powder Technology 237:14–23. doi:10.1016/j.powtec.2013.01.001.
  • Khosravi Bizhaem, H., and H. Basirat Tabrizi. 2017. Investigating effect of pulsed flow on hydrodynamics of gas-solid fluidized bed using two-fluid model simulation and experiment. Powder Technology 311:328–40. doi:10.1016/j.powtec.2017.01.027.
  • Kucuk, H., A. Midilli, A. Kilic, and I. Dincer. 2014. A review on thin-layer drying-curve equations. Drying Technology 32 (7):757–73. doi:10.1080/07373937.2013.873047.
  • Kudra, T. 2003. Sticky region in drying – definition and identification. Drying Technology 21 (8):1457–69. doi:10.1081/DRT-120024678.
  • Kunii, D., and O. Levenspiel. 1991. Fluidization engineering. Elsevier. doi:10.1016/c2009-0-24190-0.
  • Lewis, W. K. 1921. The rate of drying of solid materials. Journal of Industrial & Engineering Chemistry 13 (5):427–32. doi:10.1021/ie50137a021.
  • Li, H. W., and H. Guo. 2017. Analysis of drying characteristics in mixed pulsed rectangle fluidized beds. Powder Technology 308:451–60. doi:10.1016/j.powtec.2016.11.033.
  • Li, Y., F. Zhu, Y. Zhang, Y. Zhao, G. Zhang, Q. Huang, and L. Dong. 2020. Characterization of bubble behaviors in a dense phase pulsed gas–solid fluidized bed for dry coal processing. Particuology 53:83–9. doi:10.1016/j.partic.2020.01.002.
  • Li, Y., L. Du, Y. Zhao, Z. Wang, F. Zhu, Z. Lu, C. Duan, L. Dong, and C. Zhou. 2021. Segregation and mixing behavior of Geldart D binary particles in pulsed gas-solid fluidized bed. Particulate Science and Technology. doi:10.1080/02726351.2021.1954116.
  • Liu, Y., J. Peng, Y. Kansha, M. Ishizuka, A. Tsutsumi, D. Jia, X. T. Bi, C. J. Lim, and S. Sokhansanj. 2014. Novel fluidized bed dryer for biomass drying. Fuel Processing Technology 122:170–5. doi:10.1016/j.fuproc.2014.01.036.
  • Lu, P., Y. Cao, W. P. Pan, and C. Ma. 2011. Heat transfer characteristics in a horizontal swirling fluidized bed. Experimental Thermal and Fluid Science 35 (6):1127–34. doi:10.1016/j.expthermflusci.2011.03.007.
  • Madhiyanon, T., A. Phila, and S. Soponronnarit. 2009. Models of fluidized bed drying for thin-layer chopped coconut. Applied Thermal Engineering 29 (14–15):2849–54. doi:10.1016/j.applthermaleng.2009.02.003.
  • Meziane, S. 2011. Drying kinetics of olive pomace in a fluidized bed dryer. Energy Conversion and Management 52 (3):1644–9. doi:10.1016/j.enconman.2010.10.027.
  • Midilli, A., H. Kucuk, and Z. Yapar. 2002. A new model for single-layer drying. Drying Technology 20 (7):1503–13. doi:10.1081/DRT-120005864.
  • Momenzadeh, L., A. Zomorodian, and D. Mowla. 2011. Experimental and theoretical investigation of shelled corn drying in a microwave-assisted fluidized bed dryer using artificial neural network. Food and Bioproducts Processing 89 (1):15–21. doi:10.1016/j.fbp.2010.03.007.
  • Moreira, M. T., G. Feijoo, A. Sanromán, and J. M. Lema. 1996. Effect of pulsation on morphology of Aspergillus niger and Phanerochaete chrysosporium in a fluidized-bed reactor. Progress in Biotechnology 11 (C):518–23. doi:10.1016/S0921-0423(96)80071-2.
  • Motevali, A., and R. Amiri Chayjan. 2017. Effect of various drying bed on thermodynamic characteristics. Case Studies in Thermal Engineering 10 (January):399–406. doi:10.1016/j.csite.2017.09.007.
  • Namdarkedenji, R., K. Hashemnia, and H. Emdad. 2018. Effect of flow pulsation on fluidization degree of gas-solid fluidized beds by using coupled CFD-DEM. Advanced Powder Technology 29 (12):3527–41. doi:10.1016/j.apt.2018.09.033.
  • Niamnuy, C., and S. Devahastin. 2005. Drying kinetics and quality of coconut dried in a fluidized bed dryer. Journal of Food Engineering 66 (2):267–71. doi:10.1016/j.jfoodeng.2004.03.017.
  • Nitz, M., and O. P. Taranto. 2007. Drying of beans in a pulsed fluid bed dryer: drying kinetics, fluid-dynamic study and comparisons with conventional fluidization. Journal of Food Engineering 80 (1):249–56. doi:10.1016/j.jfoodeng.2006.05.025.
  • Page, G. E. 1949. Factors influencing the maximum rates of air drying shelled corn in thin layers. Diss., Purdue University.
  • Pan, Y. K., L. J. Zhao, Z. X. Dong, A. S. Mujumdar, and T. Kudra. 1999. Intermittent drying of carrot in a vibrated fluid bed: effect on product quality. Drying Technology 17 (10):2323–40. doi:10.1080/07373939908917686.
  • Perazzini, H., F. B. Freire, and J. T. Freire. 2017. The influence of vibrational acceleration on drying kinetics in vibro-fluidized bed. Chemical Engineering and Processing: Process Intensification 118:124–30. doi:10.1016/j.cep.2017.04.009.
  • Pourbagher, R., M. H. Rahmati, and M. R. Alizadeh. 2016. Air temperature and final grain moisture effects on drying time and milling quality in two types of fluidized bed dryer. Agricultural Engineering International: CIGR Journal 18 (2):449–56.
  • Ranjbaran, M., and D. Zare. 2013. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy 59:484–93. doi:10.1016/j.energy.2013.06.057.
  • Reyes, A., P. I. Alvarez, and F. H. Marquardt. 2002. Drying of carrots in a fluidized bed. I. Effects of drying conditions and modelling. Drying Technology 20 (7):1463–83. doi:10.1081/DRT-120005862.
  • Reyes, A., R. Vega, and G. Garcia. 2008. Drying sawdust in a pulsed fluidized bed. Drying Technology 26 (4):476–86. doi:10.1080/07373930801929508.
  • Reyes, A., R. Vega, R. Bustos, and C. Araneda. 2008. Effect of processing conditions on drying kinetics and particle microstructure of carrot. Drying Technology 26 (10):1272–85. doi:10.1080/07373930802307282.
  • Saniso, E., T. Swasdisewi, S. Soponronnarit, and S. Prachayawarakorn. 2021. Methods of producing parboiled rice by hot air and combined microwave-hot air fluidized bed drying. Drying Technology. doi:10.1080/07373937.2021.1903031.
  • Schubert, H. 1987. Food particle technology. Part I: properties of particles and particulate food systems. Journal of Food Engineering 6 (1):1–32. doi:10.1016/0260-8774(87)90019-7.
  • Shaul, S., E. Rabinovich, and H. Kalman. 2014. Typical fluidization characteristics for Geldart’s classification groups. Particulate Science and Technology 32 (2):197–205. doi:10.1080/02726351.2013.842624.
  • Shukrie, A., S. Anuar, and A. Alias. 2016. Characterization and development of Geldart’s fluidizing velocity profile of sand particles for the application in fluidized bed combustor (FBC). In Regional conference on science, technology and social sciences (RCSTSS 2014), ed. by Nor Azizah Yacob, Mesliza Mohamed, and Megat Ahmad Kamal Megat Hanafiah, 147–56. Singapore: Springer Singapore. doi:10.1007/978-981-10-0534-3_14.
  • Srinivas, G., and Y. P. Setty. 2013. Drying behavior of uniform and binary mixture of solids in a batch fluidized bed dryer. Powder Technology 241:181–7. doi:10.1016/j.powtec.2013.03.023.
  • Suherman, S., N. F. Azaria, and S. Karami. 2018. Performance study of fluidized bed dryer with immersed heater for paddy drying. IOP Conference Series: Materials Science and Engineering 316 (1):012026. doi:10.1088/1757-899X/316/1/012026.
  • Taghavivand, M., K. Choi, and L. Zhang. 2017. Investigation on drying kinetics and tribocharging behaviour of pharmaceutical granules in a fluidized bed dryer. Powder Technology 316:171–80. doi:10.1016/j.powtec.2016.10.061.
  • Tan, L. W., M. N. Ibrahim, R. Kamil, and F. S. Taip. 2011. Empirical modeling for spray drying process of sticky and non-sticky products. Procedia Food Science 1:690–7. doi:10.1016/j.profoo.2011.09.104.
  • Tardos, G., D. Mazzone, and R. Pfeffer. 1985. Destabilization of fluidized beds due to agglomeration part I: theoretical model. The Canadian Journal of Chemical Engineering 63 (3):377–83. doi:10.1002/cjce.5450630304.
  • Tasirin, S. M., I. Puspasari, A. W. Lun, P. V. Chai, and W. T. Lee. 2014. Drying of Kaffir lime leaves in a fluidized bed dryer with inert particles: kinetics and quality determination. Industrial Crops and Products 61:193–201. doi:10.1016/j.indcrop.2014.07.004.
  • Tatemoto, Y., R. Mizukoshi, W. Ehara, and E. Ishikawa. 2015. Drying characteristics of food materials injected with organic solvents in a fluidized bed of inert particles under reduced pressure. Journal of Food Engineering 158:80–5. doi:10.1016/j.jfoodeng.2015.03.006.
  • Thant, P. P., P. S. Robi, and P. Mahanta. 2018. Inclined fluidized bed dryer performance in energy saving option. International Journal of Science, Engineering and Technology Research (IJSETR) 7 (4):230–7.
  • Tohidi, M., M. Sadeghi, and M. Torki-Harchegani. 2017. Energy and quality aspects for fixed deep bed drying of paddy. Renewable and Sustainable Energy Reviews 70:519–28. doi:10.1016/j.rser.2016.11.196.
  • Truong, T., V. Truong, S. Fukai, and B. Bhandari. 2019. Changes in physicochemical properties of rice in response to high-temperature fluidized bed drying and tempering. Drying Technology 37 (3):331–40. doi:10.1080/07373937.2018.1452031.
  • Tumpanuvatr, T., W. Jittanit, and V. Surojanametakul. 2018. Study of hybrid dryer prototype and its application in pregerminated rough rice drying. Drying Technology 36 (2):205–20. doi:10.1080/07373937.2017.1315432.
  • Vega-Mercado, H., M. M. Góngora-Nieto, and G. V. Barbosa-Cánovas. 2001. Advances in dehydration of foods. Journal of Food Engineering 49 (4):271–89. doi:10.1016/S0260-8774(00)00224-7.
  • Vizcarra-Mendoza, M. G., R. S. Ruiz-Martínez, C. Martínez-Vera, A. Iruegas-Evaristo, J. M. Carrillo-Guerrero, R. S. Ruiz-Martinez, C. Martinez-Vera, et al. 1998. Treatment of pollen by fludization. Drying Technology 16 (9–10):1843–53. doi:10.1080/07373939808917499.
  • Weber, S., C. Briens, F. Berruti, E. Chan, and M. Gray. 2006. Agglomerate stability in fluidized beds of glass beads and silica sand. Powder Technology 165 (3):115–27. doi:10.1016/j.powtec.2006.03.006.
  • Yudin, A. S. M. 2017. Performance characteristics of air distributor designs in a fluidized bed. Universiti Malaysia Pahang. http://umpir.ump.edu.my/id/eprint/20516/.
  • Zhang, K., S. Wang, B. Li, Y. He, and Y. Zhao. 2020. Heat transfer in a pulsed fluidized bed by using coupled CFD-DEM method. Powder Technology 367:497–505. doi:10.1016/j.powtec.2020.04.013.
  • Zhang, K., S. Wang, Y. Tang, G. Liu, and Y. He. 2020. Gas pulsation effect on flow behaviors and heat transfer in a tapered fluidized bed. Powder Technology 361:540–7. doi:10.1016/j.powtec.2019.11.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.