381
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

Biogenic synthesis of gold nanoparticles using red seaweed Champia parvula and its anti-oxidant and anticarcinogenic activity on lung cancer

, , , , , , , & show all

References

  • Akintelu, S. A., B. Yao, and A. S. Folorunso. 2021. Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon 7 (3):e06591. doi:10.1016/j.heliyon.2021.e06591.
  • Al-Brahim, J. S., and A. E. Mohammed. 2020. Anti-oxidant, cytotoxic and antibacterial potentials of biosynthesized silver nanoparticles using bee’s honey from two different floral sources in Saudi Arabia. Saudi Journal of Biological Sciences 27 (1):363–73. doi:10.1016/j.sjbs.2019.10.006.
  • Al-Dulimi, A. G., A. Z. Al-Saffar, G. M. Sulaiman, K. A. Khalil, K. S. Khashan, H. S. Al-Shmgani, and E. M. Ahmed. 2020. Immobilization of l-asparaginase on gold nanoparticles for novel drug delivery approach as anti-cancer agent against human breast carcinoma cells. Journal of Materials Research and Technology 9 (6):15394–411. doi:10.1016/j.jmrt.2020.10.021.
  • Al-Musawi, S., S. Albukhaty, H. Al-Karagoly, G. M. Sulaiman, M. S. Alwahibi, Y. H. Dewir, D. A. Soliman, and H. Rizwana. 2020. Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing. Molecules 25 (20):4770. doi:10.3390/molecules25204770.
  • Babu, B., S. Palanisamy, M. Vinosha, R. Anjali, P. Kumar, B. Pandi, M. Tabarsa, S. You, and N. M. Prabhu. 2020. Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: Anti-oxidant, antibacterial, and anti-cancer activities. Bioprocess and Biosystems Engineering 43 (12):2231–42. doi:10.1007/s00449-020-02408-3.
  • Badeggi, U. M., E. Ismail, A. O. Adeloye, S. Botha, J. A. Badmus, J. L. Marnewick, C. N. Cupido, and A. A. Hussein. 2020. Green synthesis of gold nanoparticles capped with procyanidins from Leucosidea sericea as potential antidiabetic and anti-oxidant agents. Biomolecules 10 (3):452. doi:10.3390/biom10030452.
  • Batool, S., Z. Hussain, M. B. K. Niazi, U. Liaqat, and M. Afzal. 2019. Biogenic synthesis of silver nanoparticles and evaluation of physical and anti-microbial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application. Journal of Drug Delivery Science and Technology 52:403–14. doi:10.1016/j.jddst.2019.05.016.
  • Chellapandian, C., B. Ramkumar, P. Puja, R. Shanmuganathan, A. Pugazhendhi, and P. Kumar. 2019. Gold nanoparticles using red seaweed Gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies. Process Biochemistry 80:58–63. doi:10.1016/j.procbio.2019.02.009.
  • Chen, J., Y. Li, G. Fang, Z. Cao, Y. Shang, S. Alfarraj, S. A. Alharbi, J. Li, S. Yang, and X. Duan. 2021. Green synthesis, characterization, cytotoxicity, anti-oxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arabian Journal of Chemistry 14 (3):103000. doi:10.1016/j.arabjc.2021.103000.
  • Dahoumane, S. A., C. Yéprémian, C. Djédiat, A. Couté, F. Fiévet, T. Coradin, and R. Brayner. 2016. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. Journal of Nanoparticle Research 18 (3):1–12. doi:10.1007/s11051-016-3378-1.
  • Deepak, P., R. Sowmiya, G. Balasubramani, D. Aiswarya, D. Arul, M. P. D. Josebin, and P. Perumal. 2018. Mosquito-larvicidal efficacy of gold nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848. Particulate Science and Technology 36 (8):974–80. doi:10.1080/02726351.2017.1331286.
  • Devi, K. P., N. Suganthy, P. Kesika, and S. K. Pandian. 2008. Bioprotective properties of seaweeds: In vitro evaluation of anti-oxidant activity and anti-microbial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine 8 (1):1–11. doi:10.1186/1472-6882-8-38.
  • Dubau, L., L. Castanheira, G. Berthomé, and F. Maillard. 2013. An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochimica Acta 110:273–81. doi:10.1016/j.electacta.2013.03.184.
  • El-Kassas, H. Y., and M. M. El-Sheekh. 2014. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pacific Journal of Cancer Prevention 15 (10):4311–7. doi:10.7314/apjcp.2014.15.10.4311.
  • El-Sheekh, M. M., L. H. Hassan, and H. H. Morsi. 2021. Evaluation of anti-microbial activities of blue-green algae-mediated silver and gold nanoparticles. Rendiconti Lincei. Scienze Fisiche e Naturali 32 (4):747–59. doi:10.1007/s12210-021-01016-x.
  • Francis, S., E. P. Koshy, and B. Mathew. 2018. Green synthesis of Stereospermum suaveolens capped silver and gold nanoparticles and assessment of their innate antioxidant, antimicrobial and antiproliferative activities. Bioprocess and Biosystems Engineering 41 (7):939–51. doi:10.1007/s00449-018-1925-0.
  • González-Ballesteros, N., and M. C. Rodríguez-Argüelles. 2020. Seaweeds: A promising bionanofactory for ecofriendly synthesis of gold and silver nanoparticles. In Sustainable seaweed technologies, 507–41. Elsevier. doi:10.1016/B978-0-12-817943-7.00018-4.
  • Gupta, R. K., V. Kumar, R. K. Gundampati, M. Malviya, S. H. Hasan, and M. V. Jagannadham. 2017. Biosynthesis of silver nanoparticles from the novel strain of Streptomyces sp. BHUMBU-80 with highly efficient electroanalytical detection of hydrogen peroxide and antibacterial activity. Journal of Environmental Chemical Engineering 5 (6):5624–35. doi:10.1016/j.jece.2017.09.029.
  • Hosny, M., M. Fawzy, A. M. Abdelfatah, E. E. Fawzy, and A. S. Eltaweil. 2021. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anti-cancer, anti-oxidant and catalytic efficiencies. Advanced Powder Technology 32 (9):3220–33. doi:10.1016/j.apt.2021.07.008.
  • Manjunath Hulikere, M. H., C. G. Joshi, A. Danagoudar, J. Poyya, A. K. Kudva, and D. Bhadrapura Lakkappa. 2017. Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their anti-oxidant and anti-microbial properties. Process Biochemistry 63:137–44. doi:10.1016/j.procbio.2017.09.008.
  • Kaithavelikkakath Francis, P., S. Sivadasan, A. Avarachan, and A. Gopinath. 2020. A novel green synthesis of gold nanoparticles using seaweed Lobophora variegata and its potential application in the reduction of nitrophenols. Particulate Science and Technology 38 (3):365–70. doi:10.1080/02726351.2018.1547340.
  • Kavaz, D., U. Huzaifa, and T. Zimuto. 2019. Biosynthesis of gold nanoparticles using Scytosiphon lomentaria (Brown algae) and Spyridia filamentosa (Red algae) from Kyrenia region and evaluation of their anti-microbial and anti-oxidant activity. Hacettepe Journal of Biology and Chemistry 47 (4):367–82. doi:10.15671/hjbc.518593.
  • Kedi, P. B. E., F. E. A. Meva, L. Kotsedi, E. L. Nguemfo, C. B. Zangueu, A. A. Ntoumba, H. E. A. Mohamed, A. B. Dongmo, and M. Maaza. 2018. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. International Journal of Nanomedicine 13:8537–48. doi:10.2147/IJN.S174530.
  • Khalifa, S. A. M., N. Elias, M. A. Farag, L. Chen, A. Saeed, M.-E F. Hegazy, M. S. Moustafa, A. Abd El-Wahed, S. M. Al-Mousawi, S. G. Musharraf, et al. 2019. Marine natural products: A source of novel anti-cancer drugs. Marine Drugs 17 (9):491. doi:10.3390/md17090491.
  • Krist, A. H., K. W. Davidson, C. M. Mangione, M. J. Barry, M. Cabana, A. B. Caughey, E. M. Davis, K. E. Donahue, C. A. Doubeni, M. Kubik, et al. 2021. Screening for lung cancer: US Preventive Services Task Force recommendation statement. JAMA 325 (10):962–70. doi:10.1001/jama.2021.1117.
  • Kumar, V., D. Bano, S. Mohan, D. K. Singh, and S. H. Hasan. 2016. Sunlight-induced green synthesis of silver nanoparticles using aqueous leaf extract of Polyalthia longifolia and its anti-oxidant activity. Materials Letters 181:371–7. doi:10.1016/j.matlet.2016.05.097.
  • Kumar, V., D. Bano, D. K. Singh, S. Mohan, V. K. Singh, and S. H. Hasan. 2018. Size-dependent synthesis of gold nanoparticles and their peroxidase-like activity for the colorimetric detection of glutathione from human blood serum. ACS Sustainable Chemistry & Engineering 6 (6):7662–75. doi:10.1021/acssuschemeng.8b00503.
  • Kumar, V., R. K. Gundampati, D. K. Singh, M. V. Jagannadham, S. Sundar, and S. H. Hasan. 2016. Photo-induced rapid biosynthesis of silver nanoparticle using aqueous extract of Xanthium strumarium and its antibacterial and antileishmanial activity. Journal of Industrial and Engineering Chemistry 37:224–36. doi:10.1016/j.jiec.2016.03.032.
  • Kumar, V., S. Mohan, D. K. Singh, D. K. Verma, V. K. Singh, and S. H. Hasan. 2017. Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of iron(III), antibacterial and antioxidant activity. Materials Science & Engineering. C, Materials for Biological Applications 71:1004–19. doi:10.1016/j.msec.2016.11.013.
  • Latha, D., P. Prabu, C. Arulvasu, R. Manikandan, S. Sampurnam, and V. Narayanan. 2018. Enhanced cytotoxic effect on human lung carcinoma cell line (A549) by gold nanoparticles synthesized from Justicia adhatoda leaf extract. Asian Pacific Journal of Tropical Biomedicine 8 (11):540. doi:10.4103/2221-1691.245969.
  • Li, H., X. Ma, J. Dong, and W. Qian. 2009. Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity. Analytical Chemistry 81 (21):8916–22. doi:10.1021/ac901534b.
  • Ma, X., H. Li, J. Dong, and W. Qian. 2011. Determination of hydrogen peroxide scavenging activity of phenolic acids by employing gold nanoshells precursor composites as nanoprobes. Food Chemistry 126 (2):698–704. doi:10.1016/j.foodchem.2010.11.028.
  • Mahendiran, D., G. Subash, D. Arumai Selvan, D. Rehana, R. Senthil Kumar, and A. Kalilur Rahiman. 2017. Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, anti-oxidant and anti-proliferative studies. BioNanoScience 7 (3):530–45. doi:10.1007/s12668-017-0418-y.
  • Misra, N., J. Biswal, A. Gupta, J. K. Sainis, and S. Sabharwal. 2012. Gamma radiation induced synthesis of gold nanoparticles in aqueous polyvinyl pyrrolidone solution and its application for hydrogen peroxide estimation. Radiation Physics and Chemistry 81 (2):195–200. doi:10.1016/j.radphyschem.2011.10.014.
  • Mmola, M., M. L. Roes-Hill, K. Durrell, J. J. Bolton, N. Sibuyi, M. E. Meyer, D. R. Beukes, and E. Antunes. 2016. Enhanced anti-microbial and anti-cancer activity of silver and gold nanoparticles synthesised using Sargassum incisifolium aqueous extracts. Molecules 21 (12):1633. doi:10.3390/molecules21121633.
  • Namvar, F., S. Azizi, M. B. Ahmad, K. Shameli, R. Mohamad, M. Mahdavi, and P. M. Tahir. 2015. Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Research on Chemical Intermediates 41 (8):5723–30. doi:10.1007/s11164-014-1696-4.
  • Nie, Z., K. J. Liu, C. J. Zhong, L. F. Wang, Y. Yang, Q. Tian, and Y. Liu. 2007. Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: A novel inspiration for development of new artificial antioxidants. Free Radical Biology & Medicine 43 (9):1243–54. doi:10.1016/j.freeradbiomed.2007.06.011.
  • Parial, D., H. K. Patra, A. K. Dasgupta, and R. Pal. 2012. Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology 47 (1):22–9. doi:10.1080/09670262.2011.653406.
  • Patil, M. P., Y. B. Seo, H. K. Lim, and G. D. Kim. 2019. Biofabrication of gold nanoparticles using Agrimonia pilosa extract and their anti-oxidant and cytotoxic activity. Green Chemistry Letters and Reviews 12 (3):208–16. doi:10.1080/17518253.2019.1623927.
  • Pu, S., J. Li, L. Sun, L. Zhong, and Q. Ma. 2019. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Carbohydrate Polymers 211:161–72. doi:10.1016/j.carbpol.2019.02.007.
  • Rajeshkumar, S., C. Malarkodi, G. Gnanajobitha, K. Paulkumar, M. Vanaja, C. Kannan, and G. Annadurai. 2013. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. Journal of Nanostructure in Chemistry 3 (1):1–7. doi:10.1186/2193-8865-3-44.
  • Rajeshkumar, S., M. H. Sherif, C. Malarkodi, M. Ponnanikajamideen, M. V. Arasu, N. A. Al-Dhabi, and S. M. Roopan. 2021. Cytotoxicity behaviour of response surface model optimized gold nanoparticles by utilizing fucoidan extracted from Padina tetrastromatica. Journal of Molecular Structure 1228 (15):129440. doi:10.1016/j.molstruc.2020.129440.
  • Ramesh, A. V., D. R. Devi, G. Battu, and K. Basavaiah. 2018. A facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, anti-oxidant and antibacterial applications. South African Journal of Chemical Engineering 26:25–34. doi:10.1016/j.sajce.2018.07.001.
  • Ratan, Z. A., M. F. Haidere, M. D. Nurunnabi, S. M. Shahriar, A. J. Ahammad, Y. Y. Shim, M. J. Reaney, and J. Y. Cho. 2020. Green chemistry synthesis of silver nanoparticles and their potential anti-cancer effects. Cancers 12 (4):855. doi:10.3390/cancers12040855.
  • Roni, M., K. Murugan, C. Panneerselvam, J. Subramaniam, M. Nicoletti, P. Madhiyazhagan, D. Dinesh, U. Suresh, H. F. Khater, H. Wei, et al. 2015. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicology and Environmental Safety 121:31–8. doi:10.1016/j.ecoenv.2015.07.005.
  • Sandhiya, V., P. Thirunavukkarasu, B. Gomathy, M. Sridhar, S. Rajeshkumar, M. Ravi, and S. Asha. 2021. Agnp-Hp synthesized using red marine algae Halymenia pseudofloresii and its pharmacological activities. Annals of the Romanian Society for Cell Biology 25 (6):19433–50. https://annalsofrscb.ro/index.php/journal/article/view/9758.
  • Song, J. Y., and B. S. Kim. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering 32 (1):79–84. doi:10.1007/s00449-008-0224-6.
  • Sun, B., N. Hu, L. Han, Y. Pi, Y. Gao, and K. Chen. 2019. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artificial Cells, Nanomedicine, and Biotechnology 47 (1):4012–9. doi:10.1080/21691401.2019.1575844.
  • Tian, S., K. Saravanan, R. A. Mothana, G. Ramachandran, G. Rajivgandhi, and N. Manoharan. 2020. Anti-cancer activity of biosynthesized silver nanoparticles using Avicennia marina against A549 lung cancer cells through ROS/mitochondrial damages. Saudi Journal of Biological Sciences 27 (11):3018–24. doi:10.1016/j.sjbs.2020.08.029.
  • Vimalraj, S., T. Ashokkumar, and S. Saravanan. 2018. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomedicine & Pharmacotherapy 105:440–8. doi:10.1016/j.biopha.2018.05.151.
  • Vinoth Kumar, R., S. Murugesan, and S. Bhuvaneswari. 2015. Phytochemical analysis of red alga Champia parvula (C. Agardh) collected from Mandapam coast of Tamil Nadu, India. International Journal of Advances in Pharmaceutics 4 (3):15–20. https://core.ac.uk/download/pdf/335077991.pdf.
  • Vinoth Kumar, R., S. Murugesan, and N. Shettu. 2017. Anti-diabetic potential of marine red alga Champia parvula (C. agardh) by inhibiting key metabolic enzymes. World Journal of Pharmaceutical Research 6 (10):1466–74. https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1504576050.pdf.
  • Vinoth Kumar, R., M. Subbiah, V. Sivamurugan, and A. Ramu Ganesan. 2019. Recovery of aliphatic fatty acids from red seaweed Champia parvula (C. Agardh) and its antifungal action. Journal of Aquatic Food Product Technology 28 (9):922–32. doi:10.1080/10498850.2019.1663965.
  • Vinothkumar, R., M. Kotteswari, S. Murugesan, and R. Hariharan. 2019. Screening of anti-oxidant activity of methanol extract of marine red algae Champia parvula (C. agaedh). International Journal of Recent Scientific Research 10 (8):34118–22. doi:10.24327/ijrsr.2019.1008.3824.
  • Viswanathan, S., T. Palaniyandi, R. Shanmugam, T. M, B. K. Rajendran, and A. Sivaji. 2021. Biomedical potential of silver nanoparticles capped with active ingredients of Hypnea valentiae, red algae species. Particulate Science and Technology 40:1–11. doi:10.1080/02726351.2021.1992059.
  • Wang, M., and M. Thanou. 2010. Targeting nanoparticles to cancer. Pharmacological Research 62 (2):90–9. doi:10.1016/j.phrs.2010.03.005.
  • Xia, Q., J. Huang, Q. Feng, X. Chen, X. Liu, X. Li, T. Zhang, S. Xiao, H. Li, Z. Zhong, et al. 2019. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. International Journal of Nanomedicine 14:6957–70. doi:10.2147/IJN.S214008.
  • Yogarajalakshmi, P., T. V. Poonguzhali, R. Ganesan, S. Karthi, S. Senthil-Nathan, P. Krutmuang, N. Radhakrishnan, F. Mohammad, T. J. Kim, and P. Vasantha-Srinivasan. 2020. Toxicological screening of marine red algae Champia parvula (C. Agardh) against the dengue mosquito vector Aedes aegypti (Linn.) and its non-toxicity against three beneficial aquatic predators. Aquatic Toxicology 222:105474. doi:10.1016/j.aquatox.2020.105474.
  • Zhang, D., G. Ramachandran, R. A. Mothana, N. A. Siddiqui, R. Ullah, O. M. Almarfadi, G. Rajivgandhi, and N. Manoharan. 2020. Biosynthesized silver nanoparticles using Caulerpa taxifolia against A549 lung cancer cell line through cytotoxicity effect/morphological damage. Saudi Journal of Biological Sciences 27 (12):3421–7. doi:10.1016/j.sjbs.2020.09.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.