271
Views
5
CrossRef citations to date
0
Altmetric
Review

Fluidized dense phase pneumatic conveying: a review

, ORCID Icon, &

References

  • Aked, C., D. Goder, H. Kalman, and A. Zvieli. 1997. Attrition of very fine powders during pneumatic conveying. Powder Handling and Processing 9:345–8.
  • Albright, C., J. Holden, H. Simons, and L. Schmidt. 1951. Pressure drop in flow of dense coal-air mixtures. Industrial & Engineering Chemistry 43 (8):1837–40. doi:10.1021/ie50500a044.
  • Alkassar, Y., V. K. Agarwal, N. Behera, M. G. Jones, and R. K. Pandey. 2019. Transient characteristics of fine powder flows within fluidized dense phase pneumatic conveying systems. Powder Technology 343:629–43. doi:10.1016/j.powtec.2018.11.081.
  • Alkassar, Y., V. K. Agarwal, R. K. Pandey, and N. Behera. 2020a. Analysis of dense phase pneumatic conveying of fly ash using CFD including particle size distribution. Particulate Science and Technology 39 (3):322–337. doi:10.1080/02726351.2020.1727592.
  • Alkassar, Y., V. K. Agarwal, R. K. Pandey, and N. Behera. 2020b. Experimental study and Shannon entropy analysis of pressure fluctuations and flow mode transition in fluidized dense phase pneumatic conveying of fly ash. Particuology 49:169–78. doi:10.1016/j.partic.2019.03.003.
  • Alkassar, Y., V. K. Agarwal, R. K. Pandey, and N. Behera. 2021. Influence of particle attrition on erosive wear of bends in dilute phase pneumatic conveying. Wear 476:203594. doi:10.1016/j.wear.2020.203594.
  • Anderson, T. B., and R. O. Y. Jackson. 1967. A fluid mechanical description of fluidized beds. Industrial & Engineering Chemistry Fundamentals 6 (4):527–39. doi:10.1021/i160024a007.
  • Azzopardi, B. J., K. Jackson, J. P. Robinson, R. Kaji, M. Byars, and A. Hunt. 2008. Fluctuations in dense phase pneumatic conveying of pulverised coal measured using electrical capacitance tomography. Chemical Engineering Science 63 (9):2548–58. doi:10.1016/j.ces.2008.02.013.
  • Barth, W. 1958. Strömungsvorgänge beim Transport von Festteilchen und Flüssigkeitsteilchen. Chemie Ingenieur Technik 30 (3):171–80.
  • Behera, N., V. K. Agarwal, and M. G. Jones. 2015b. A model of solids friction factor for fluidized dense phase pneumatic conveying. Powder Technology 284:403–10. doi:10.1016/j.powtec.2015.07.010.
  • Behera, N., V. K. Agarwal, M. Jones, and K. C. Williams. 2013. Modeling and analysis of solids friction factor for fluidized dense phase pneumatic conveying of powders. Particulate Science and Technology 31 (2):136–46. doi:10.1080/02726351.2012.672544.
  • Behera, N., V. K. Agarwal, M. Jones, and K. C. Williams. 2015a. Power spectral density analysis of pressure fluctuation in pneumatic conveying of powders. Particulate Science and Technology 33 (5):510–6. doi:10.1080/02726351.2015.1008079.
  • Behera, N., V. K. Agarwal, M. G. Jones, and K. C. Williams. 2013a. CFD modeling and analysis of dense phase pneumatic conveying of fine particles including particle size distribution. Powder Technology 244:30–7. doi:10.1016/j.powtec.2013.04.005.
  • Behera, N., V. K. Agarwal, M. G. Jones, and K. C. Williams. 2013b. Modeling and analysis for fluidized dense phase conveying including particle size distribution. Powder Technology 235:386–94. doi:10.1016/j.powtec.2012.10.038.
  • Behera, N., V. K. Agarwal, M. G. Jones, and K. C. Williams. 2012. Transient parameter analysis of fluidized dense phase conveying. Powder Technology. 217:261–8. doi:10.1016/j.powtec.2011.10.036.
  • Bradley, M. S. A. 1989. An improved method of predicting pressure drop along pneumatic conveying pipelines. Third International Conference of Bulk Material Storage, Handling and Transportation, 282–288. doi:10.3316/informit.653122315755592.
  • Bradley, M. S. A. 1990b. Prediction of pressure losses in pneumatic conveying systems. PhD Thesis, Thames Polytechnic, London, UK.
  • Bradley, M. S. A. 1990a. Pressure losses caused by bends in pneumatic conveying pipelines, effects of bend geometry and fittings. Powder Handling and Processing 2:315–21.
  • Bradley, M. S. A., and A. R. Reed. 1990. An improved method of predicting pressure drop along pneumatic conveying pipelines. Powder Handling and Processing 2:223–7.
  • Chambers, A. J, and R. D. Marcus. 1986. Pneumatic conveying calculations. 2nd International Conference on Bulk Materials Storage and Transportation, Institution of Engineers, Australia, Wollongong, Australia.
  • Chen B., A. A. Cenna, K. C. Williams, M. G. Jones, and Y. Wang. 2014. Investigation of energy consumption and wear in bypass pneumatic conveying of alumina. lecture notes in mechanical engineering. London: Springer International Publishing.
  • Chen, B., K. C. Williams, M. G. Jones, and Y. Wang. 2012. Experimental investigation of pressure drop in bypass pneumatic conveying of fly ash. Advanced Materials Research 508:11–5. doi:10.4028/www.scientific.net/AMR.508.11.
  • Chen, W., K. C. Williams, I. Jabs, and M. G. Jones. 2014. A qualitative study on the pulsatile flow phenomenon in a dense fly ash pneumatic conveyor. Particuology 17:81–91. doi:10.1016/j.partic.2014.03.005.
  • Datta, B. K., and C. Ratnayaka. 2003. A simple technique for scaling up pneumatic conveying systems. Particulate Science and Technology 21 (3):227–36. doi:10.1080/02726350307480.
  • Datta, B. K., and C. Ratnayaka. 2005. A possible scaling-up technique for dense phase pneumatic conveying. Particulate Science and Technology 23 (2):201–4. doi:10.1080/02726350590922198.
  • Dhodapkar, S. V., and G. E. Klinzing. 1993. Pressure fluctuations in pneumatic conveying systems. Powder Technology 74 (2):179–95. doi:10.1016/0032-5910.
  • Dhodapkar, S. 1991. Flow pattern classification in gas-solid suspensions. PhD. Thesis, School of Engineering, University of Pittsburgh.
  • Dixon, G. 1979. The impact of powder properties on dense phase flow. Proceeding for the International Conference On Pneumatic Conveying, London, UK.
  • Fargette, C. 1997. Bench scale tests for the assessment of pneumatic conveying behaviour of powders. Master’s thesis, Glasgow Caledonian University, UK.
  • Geldart, D. 1973. Types of gas fluidization. Powder Technology 7 (5):285–92. doi:10.1016/0032-5910(73)80037-3.
  • Goder, D., H. Kalman, G. Ben-Dor, and M. Rivkin. 1994. Experimental investigation of the effect of moisture content and particle size on the pneumatic transportability in a dense phase. Powder Handling and Processing 6:295–9.
  • Gomes, L. M., and A. L. A. Mesquita. 2014. On the prediction of pickup and saltation velocities in pneumatic conveying. Brazilian Journal of Chemical Engineering 31 (1):35–46. doi:10.1590/S0104-66322014000100005.
  • Gupta S., V. Agarwal, V. Seshadri, S. Singh, and D. Mills. 2006. Investigations into the factors influencing the fluidized motion conveying of flyash. Proceedings of the CHoPS-05, 2006 Conference, Italy.
  • Hong, J., and Y. Tomita. 1995. Analysis of high density gas-solids stratified pipe flow. International Journal of Multiphase Flow 21 (4):649–65.
  • Jones M., D. Mason, R. Ansell, and C. Fargette. 1998. Development of de-aeration and permeability tests for the assessment of pneumatic conveying capability. Proceedings of 3rd World Congress on Particle Technology, Brighton, UK.
  • Jones, M. G. 1988. The influence of bulk particulate properties on pneumatic conveying performance. UK: Thames Polytechnic.
  • Jones, M. G., B. Chen, K. C. Williams, A. A. Cenna, and Y. Wang. 2012. High speed visualization of pneumatic conveying of materials in bypass system. Advanced Materials Research 508:6–10. doi:10.4028/www.scientific.net/AMR.508.6.
  • Jones, M. G., and D. Mills. 1990. Product classification for pneumatic conveying. Powder Handling and Processing 2:117–22.
  • Jones, M. G., and K. C. Williams. 2003. Solids friction factor for fluidized dense phase conveying. Particulate Science and Technology 21 (1):45–56.
  • Jones, M. G., and K. C. Williams. 2008. Predicting the mode of flow in pneumatic conveying systems-A review. Particuology 6 (5):289–300. doi:10.1016/j.partic.2008.05.003.
  • Kalman, H., and A. Rawat. 2020. Flow regime chart for pneumatic conveying. Chemical Engineering Science 211:115256. doi:10.1016/j.ces.2019.115256.
  • Kalman, H. 1999. Attrition control by pneumatic conveying. Powder Technology 104 (3):214–20. doi:10.1016/S0032-5910(99)00097-2.
  • Keys, S, and A. J. Chambers. 1993. Scaling pneumatic conveying characteristics for pipeline pressure. Proceedings of International Symposium: Reliable Flow of Particulate Solids II, Oslo, Norway; Powder Science & Technology Research, AS, Norway, 534–44.
  • Klinzing G. E., R. D. Marcus, F. Rizk, and L. S. Leung. 1997. Pneumatic conveying of solids – a theoretical and practical approach. Springer-Science & Business Media, B.Y.
  • Konrad, K., D. Harrison, R. M. Nedderman, and J. F. Davidson. 1980. Prediction of the pressure drop for horizontal dense phase pneumatic conveying of particles. Bulletin of the Chemical Society of Japan :225–44.
  • Levy, A., and D. J. Mason. 2000. Two-layer model for non-suspension gas-solids flow in pipes. Powder Technology 112 (3):263–2.
  • Ma A., K. C. Williams, J. Zhou, and M. G. Jones. 2009. Numerical simulation on sensitivity of pressure drop predicting in pneumatic transport with various settings. 6th International Conference for Conveying and Handling of Particulate Solids, Brisbane, Australia, 102–107.
  • Mainwaring, N. J. 1993. Characterization of materials for pneumatic conveying. American Ceramic Society Bulletin 72:63–71.
  • Mainwaring, N. J., and A. R. Reed. 1987. Permeability and air retention characteristics of bulk solid materials in relation to modes of dense phase pneumatic conveying. Bulk Solids Handling 7:415–25.
  • Mallick, S., and P. Wypych. 2009. Modelling solids friction for dense-phase pneumatic conveying of powders. Particulate Science and Technology 27 (5):444–55. doi:10.1080/02726350903133153.
  • Mallick, S. S., and P. W. Wypych. 2007. Solids friction in fluidised dense-phase flow. Bulk Solids Handling 27:398–406.
  • Mallick, S. S., and P. W. Wypych. 2009. Minimum transport boundaries for pneumatic conveying of powders. Powder Technology. 194 (3):181–6. doi:10.1016/j.powtec.2009.04.003.
  • Mallick S. S., P. W. Wypych, and R. Pan. 2011. Minimum transport boundaries for dense-phase pneumatic conveying of powders. The Proceedings of Bulk Solids India, Mumbai.
  • Manger, E. 1996. Modelling and simulation of gas/solids flow in curvilinear coordinates. Ph.D Thesis Process Technology Telemark University College, Norway.
  • Marcus, R. D., and P. C. Lohrmann. 1984. Performance of a bottom discharge blow vessel pneumatically conveying three group a materials. Bulk Solids Handling 4:409–12.
  • Mason, D. J., and A. Levy. 2001. A model for non-suspension gas–solids flow of fine powders in pipes. International Journal of Multiphase Flow 27 (3):415–35. doi:10.1016/S0301-9322(00)00033-1.
  • Mason J., S. D. Mills, A. R. Reed, and C. R. Woodcock. 1980. Introduction to pneumatic conveying. In Powder Europa 80. London, England, 1–57.
  • Mason, J. S., and B. V. Smith. 1972. The erosion of bends by pneumatically conveyed suspensions of abrasive particles. Powder Technology 6 (6):323–35. doi:10.1016/0032-5910.
  • Massey, B. S. 1989. Mechanics of fluids. 6th ed. London: Van Nostrand Reinhold.
  • McGlinchey, D., A. Cowell, E. Knight, J. Pugh, A. Mason, and B. Foster. 2007. Bend pressure drop predictions using the Euler-Euler model in dense phase pneumatic conveying. Particulate Science and Technology 25 (6):495–506. doi:10.1080/02726350701492827.
  • Mills, D. 1990. Troubleshooting pneumatic conveying: Major systems and their key components. Chemical Engineering 97:101–7.
  • Mills, D. 2004. An investigation of the unstable region for dense phase conveying in sliding bed flow. Granular Matter 6 (2–3):173–7. doi:10.1007/s10035-004-0162-1.
  • Mills, D. 2013. Pneumatic conveying design guide. Burlington, MA: Butterworth-Heinemann.
  • Mills, D., and J. S. Mason. 1977. Particle concentration effects in bend erosion. Powder Technology 17 (1):37–53. doi:10.1016/0032-5910(77)85041-9.
  • Mills D., J. S. Mason, and R. B. Stacy. 1982. A design study for the pneumatic conveying of a fine particulate material. The Proceedings of Solidex 82: The Solids Handling Conference, Harrogate, C1–C75.
  • Mittal, A., S. S. Mallick, and P. W. Wypych. 2014. An investigation into flow mode transition and pressure fluctuations for fluidized dense-phase pneumatic conveying of fine. Particuology 16:187–95. doi:10.1016/j.partic.2014.03.006.
  • Mittal, A., S. S. Mallick, and P. W. Wypych. 2015. An investigation into pressure fluctuations for fluidized dense-phase pneumatic transport of fine powders. Powder Technology 277:163–70. doi:10.1016/j.powtec.2015.02.052.
  • Mittal, A., S. S. Mallick, and P. W. Wypych. 2016. An investigation into the transition of flow mechanism during fluidized dense-phase pneumatic conveying of fine powders. Particulate Science and Technology 34 (1):23–32. doi:10.1080/02726351.2015.1038672.
  • Ogata K., T. Furukawa, and Y. Yamamoto. 2011. Influence of fluidizing velocity on fluidized powder conveying in a horizontal rectangular channel. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D. Hamamatsu, Japan. July 24–29, pp. 3171–3177. ASME. doi:10.1115/AJK2011-12012.
  • Ogata, K., T. Furukawa, and Y. Yamamoto. 2012. Fluidized powder conveying in a horizontal rectangular channel using fluidizing air. Advanced Powder Technology 23 (6):761–70. doi:10.1016/j.apt.2011.10.005.
  • Ogata, K., T. Hirose, and S. Yamashita. 2015. Effect of particle properties on fluidized powder conveying in a horizontal channel. Procedia Engineering 102:968–75. doi:10.1016/j.proeng.2015.01.219.
  • Pan, R. 1999. Material properties and flow modes in pneumatic conveying. Powder Technology 104 (2):157–63. doi:10.1016/S0032-5910(99)00044-3.
  • Pan, R., B. Mi, and P. W. Wypych. 1994. Pneumatic conveying characteristics of fine and granular bulk solids. KONA Powder and Particle Journal 12 (0):77–85. doi:10.14356/kona.1994014.
  • Pan, R., and P. W. Wypych. 1992. Scale-up procedures for pneumatic conveying design. Powder Handling and Processing 4:167–72.
  • Ratnayaka C., M. Melaaen, and B. Datta. 2005. Pressure drop prediction in dense phase pneumatic conveying using cfd. Fourth International Conference on CFD in the Oil and Gas, Metallurgical and Process Industries SINTEF/NTNU Trondheim, Norway.
  • Ratnayake, C., B. K. Datta, and M. C. Melaaen. 2007. A unified scaling-up technique for pneumatic conveying systems. Particulate Science and Technology 25 (3):289–302. doi:10.1080/02726350701375949.
  • Ratnayake C., M. C. Melaaen, and B. K. Datta. 2004. An experimental investigation and a CFD modelling of gas-solid flow across a bend in a dense phase pneumatic conveying system. Proceedings of 8th International Conference on Bulk Materials Storage, Handling and Transportation. University of Wollongong, Wollongong, Australia, 388–393.
  • Rizk, F. 1976. Pneumatic conveying at optimal operation conditions and a solution of Barth’s Equation. Proceedings of 3rd International Conference of Pneumatic Transport of Solids in Pipes, BHRA Fluid Engineering, volume 4.
  • Sanchez, L., N. Vasquez, G. E. Klinzing, and S. Dhodapkar. 2003. Characterization of bulk solids to assess dense phase pneumatic conveying. Powder Technology 138 (2–3):93–117. doi:10.1016/j.powtec.2003.08.061.
  • Setia, G., S. Mallick, R. Pan, and P. W. Wypych. 2016. Modeling solids friction factor for fluidized dense. Powder Technology 294:80–92. doi:10.1016/j.powtec.2016.02.006.
  • Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. 2015. Modeling minimum transport boundary for fluidized dense-phase pneumatic conveying systems. Powder Technology 277:244–51. doi:10.1016/j.powtec.2015.02.050.
  • Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. 2017. An experimental investigation into modeling solids friction for fluidized dense-phase pneumatic transport of powders. Particuology 30:83–91. doi:10.1016/j.partic.2016.03.004.
  • Setia, G., S. S. Mallick, and P. W. Wypych. 2014. On improving solid friction factor modeling for fluidized dense-phase pneumatic conveying systems. Powder Technology 257:88–103. doi:10.1016/j.powtec.2014.02.006.
  • Setia, G., S. S. Mallick, P. W. Wypych, and R. Pan. 2013. Validated scale-up procedure to predict blockage condition for fluidized dense-phase pneumatic conveying systems. Particuology 11 (6):657–63. doi:10.1016/j.partic.2012.11.007.
  • Sharma, K., S. S. Mallick, and A. Mittal. 2020. A study of energy loss due to particle to particle and wall collisions during fluidized dense-phase pneumatic transport. Powder Technology 362:707–16. doi:10.1016/j.powtec.2019.12.033.
  • Sharma, K., S. S. Mallick, and A. Mittal. 2021. An evaluation of testing and modeling procedure for solids friction factor for fluidized dense-phase pneumatic conveying of fine powders. Particulate Science and Technology 39 (1):62–73. doi:10.1080/02726351.2019.1662527.
  • Sharma, K., S. S. Mallick, A. Mittal, and P. Wypych. 2020. Modelling solids friction for fluidized dense-phase pneumatic conveying. Particulate Science and Technology 38 (4):391–403. doi:10.1080/02726351.2018.1545712.
  • Shijo, J. S., and N. Behera. 2017. Transient parameter analysis of pneumatic conveying of fine particles for predicting the change of mode of flow. Particuology 32:82–8. doi:10.1016/j.partic.2016.07.004.
  • Stegmaier, W. 1978. Zur berechnung der horizontalen pneumatischen förderung feinkörniger stoffe. Fördern Und Heb 28:363–6.
  • Tripathi, N., A. Sharma, S. S. Mallick, and P. W. Wypych. 2015. Energy loss at bends in the pneumatic conveying of fly ash. Particuology 21:65–73. doi:10.1016/j.partic.2014.09.003.
  • Wang, Y., K. C. Williams, M. G. Jones, and B. Chen. 2010. CFD simulation of gas-solid flow in dense phase bypass pneumatic conveying using the Euler–Euler model. Applied Mechanics and Materials 26–28:1190–4. doi:10.4028/www.scientific.net/AMM.26-28.1190.
  • Wang, Q. 2001. An experimental and computational study of gas/particle multiphase flow in process equipment. Ph.D thesis., Process Technology, Telemark University College, Porsgrunn, Norway.
  • Weber, M. 1981. Principles of hydraulic and pneumatic in pipes. Bulk Solids Handling 1:57–63.
  • Weber, M. 1982. Correlation analysis in the design of pneumatic conveying transport plant. Bulk Solids Handling 2:231–3.
  • Weber, M. 1991. Friction of the air and air/solid mixture in pneumatic conveying. Bulk Solids Handling 11:99–102.
  • Williams K., M. Jones, and Y. Yadav. 2007. Pressure fluctuations in dense phase pneumatic conveying. Proceedings for PARTEC-07, Orlando, FL.
  • Williams, K. C., M. G. Jones, I. Jabs, and S. Tan. 2010. Transient phenomena in dense phase pneumatic transport of fly ash powder, in: Bulk Europe 2010, UK.
  • Wilson, K. C. 1976. A unified physically-based analysis of solid-liquid pipeline flow. Proceedings of hydrotransport, BHRA Cranfield, UK, vol. 4, 1–16.
  • Woodcock, C, and J. Mason. 1987. Bulk solids handling: an introduction to the practice and technology. London: Leonard Hill. ISBN: 0412012510
  • Wypych, P, and P. Arnold. 1989. Meeting the demands of long distance and large throughput pneumatic transportation. 3rd International Conference on Bulk Materials, Storage, Handling and Transportation, 78–83. doi:10.3316/informit.650532332750702.
  • Wypych, P. W., and P. C. Arnold. 1987. Classification and prediction of fly ash handling characteristics for dense-phase and long distance pneumatic transportation. Tiz Fachber. Rohst. Eng 111:753–61.
  • Wypych, P. 1995. Latest developments in the pneumatic pipeline transport of bulk solids. 5th International Conference on Bulk Materials Storage, Handling and Transportation: Proceedings, 47–56. doi:10.3316/informit.573130970144139.
  • Wypych, P., and P. Arnold. 1986. A standardised-test procedure for pneumatic conveying design. Bulk Solids Handling 5:755–63.
  • Wypych, P., and R. Pan. 1991. Determination of air-only pressure drop in pneumatic conveying systems. Powder Handling and Processing 3:303–9.
  • Wypych, P. W. 1989. Pneumatic conveying of bulk solids. PhD thesis., University Wollongong, Australia.
  • Wypych, P. W. 1999. Prediction and scaling up of steady-state operating condition. Transport of Particulate Materials, An Intensive Short Course. Norway: Porsgruun.
  • Wypych, P. W, and P. C. Arnold. 1984. The use of powder and pipe properties in the prediction of dense phase pneumatic transport behaviour. Proceedings of the Technical Program, Pneumatech 2, Intenational Conference on Pneumatic Conveying Technology, University of Kent, Canterbury, England.
  • Wypych, P. W., and P. C. Arnold. 1985. Standardised-test procedure for pneumatic conveying design. Bulk Solids Handling 5:755–63.
  • Wypych, P. W., and P. C. Arnold. 1987. On improving scale-up procedures for pneumatic conveying design. Powder Technology 50 (3):281–94. doi:10.1016/0032-5910(87)80074-8.
  • Yang, W. C. 1978. Correlation for solid friction factor in vertical pneumatic conveying lines. AIChE Journal 24 (3):548–52. doi:10.1002/aic.690240326.
  • Yi, J., P. W. Wypych, and R. Pan. 1998. Minimum conveying velocity in dilute-phase pneumatic conveying. Powder Handling and Processing 10:255–61.
  • Zhang, C. x., Y. Zhang, D. McGlinchey, Y. Du, X. Wei, L. a. Ma, and C. s. Guan. 2010. Experimental and numerical study on power consumptions in a double-tube-socket pneumatic conveying system. Powder Technology 204 (2–3):268–72. doi:10.1016/j.powtec.2010.08.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.