133
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Effect of magnetic field on particle deposition in a modeled room

, &

References

  • Bassiouny, R., and N. S. Koura. 2008. An analytical and numerical study of solar chimney use for room natural ventilation. Energy and Buildings 40 (5):865–73. doi: 10.1016/j.enbuild.2007.06.005.
  • Beghein, C., Y. Jiang, and Q. Y. Chen. 2005. Using large eddy simulation to study particle motions in a room. Indoor Air 15 (4):281–90. doi: 10.1111/j.1600-0668.2005.00373.x.
  • Bhuvaneswari, M., S. Sivasankaran, and Y. Kim. 2011. Magnetoconvection in a square enclosure with sinusoidal temperature distributions on both side walls. Numerical Heat Transfer, Part A: Applications 59 (3):167–84. doi: 10.1080/10407782.2011.541219.
  • Chen, Q. 2009. Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment 44 (4):848–58. doi: 10.1016/j.buildenv.2008.05.025.
  • Fitzgerald, S. D., and A. W. Woods. 2008. The influence of stacks on flow patterns and stratification associated with natural ventilation. Building and Environment 43 (10):1719–33. doi: 10.1016/j.buildenv.2007.10.021.
  • Gao, N., H. Zhang, and J. Niu. 2007. Investigating indoor air quality and thermal comfort using a numerical thermal manikin. Indoor and Built Environment 16 (1):7–17. doi: 10.1177/1420326X06074667.
  • Guo, J., Z. Chen, B. Shen, J. Wang, and L. Yang. 2020. Numerical study on characteristics of particle deposition efficiency on different walls of 90° square bend. Powder Technology 364:572–83. doi: 10.1016/j.powtec.2020.01.059.
  • Hong, W., B. Wang, and J. Zheng. 2020. Numerical study on the influence of fine particle deposition characteristics on wall roughness. Powder Technology 360:120–8. doi: 10.1016/j.powtec.2019.09.079.
  • Jacob, J., and P. Sagaut. 2018. Wind comfort assessment by means of large eddy simulation with lattice Boltzmann method in full scale city area. Building and Environment 139:110–24. doi: 10.1016/j.buildenv.2018.05.015.
  • Jafari, S., M. Salmanzadeh, M. Rahnama, and G. Ahmadi. 2010. Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice Boltzmann method. Journal of Aerosol Science 41 (2):198–206. doi: 10.1016/j.jaerosci.2009.10.005.
  • Kefayati, G., S. F. Hosseinizadeh, M. Gorji, and H. Sajjadi. 2012. Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid. International Journal of Thermal Sciences 52:91–101. doi: 10.1016/j.ijthermalsci.2011.09.005.
  • King, M. F., A. Khan, N. Delbosc, H. L. Gough, C. Halios, J. F. Barlow, and C. J. Noakes. 2017. Modelling urban airflow and natural ventilation using a GPU-based lattice-Boltzmann method. Building and Environment 125:273–84. doi: 10.1016/j.buildenv.2017.08.048.
  • Kong, X., Z. Li, B. Shen, Y. Wu, Y. Zhang, and D. Cai. 2019. Simulation of flow and soot particle distribution in wall-flow DPF based on lattice Boltzmann method. Chemical Engineering Science 202:169–85. doi: 10.1016/j.ces.2019.03.039.
  • Lallemand, P., and L.-S. Luo. 2000. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 61 (6 Pt A):6546–62. 2000doi: 10.1103/physreve.61.6546.
  • Li, A., and G. Ahmadi. 1993. Deposition of aerosols on surfaces in a turbulent channel flow. International Journal of Engineering Science 31 (3):435–51. doi: 10.1016/0020-7225(93)90017-O.
  • Li, Z., M. Yang, and Y. Zhang. 2016. Lattice Boltzmann method simulation of 3-D natural convection with double MRT model. International Journal of Heat and Mass Transfer 94:222–38. doi: 10.1016/j.ijheatmasstransfer.2015.11.042.
  • Liu, F., H. Qian, Z. Luo, S. Wang, and X. Zheng. 2020. A laboratory study of the expiratory airflow and particle dispersion in the stratified indoor environment. Building and Environment 180:106988. doi: 10.1016/j.buildenv.2020.106988.
  • Livermore, S. R., and A. W. Woods. 2007. Natural ventilation of a building with heating at multiple levels. Building and Environment 42 (3):1417–30. doi: 10.1016/j.buildenv.2005.12.014.
  • Luo, L.-S., W. Liao, X. Chen, Y. Peng, and W. Zhang. 2011. Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 83 (5 Pt 2):056710. doi: 10.1103/PhysRevE.83.056710.
  • Mazumdar, S., and Q. Chen, 2009. A one-dimensional analytical model for airborne contaminant transport in airliner cabins. Indoor Air 19 (1):3–13. doi: 10.1111/j.1600-0668.2008.00553.x.
  • Melikov, A. K., Z. Popiolek, M. C. Silva, I. Care, and T. Sefker. 2007. Accuracy limitations for low-velocity measurements and draft assessment in rooms. HVAC&R Research 13 (6):971–86. doi: 10.1080/10789669.2007.10391465.
  • Norton, T., and D.-W. Sun. 2006. Computational fluid dynamics (CFD)–an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science & Technology 17 (11):600–20. doi: 10.1016/j.tifs.2006.05.004.
  • Norton, T., D.-W. Sun, J. Grant, R. Fallon, and V. Dodd. 2007. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology 98 (12):2386–414. doi: 10.1016/j.biortech.2006.11.025.
  • Rudraiah, N., R. M. Barron, M. Venkatachalappa, and C. K. Subbaraya. 1995. Effect of a magnetic field on free convection in a rectangular enclosure. International Journal of Engineering Science 33 (8):1075–84. doi: 10.1016/0020-7225(94)00120-9.
  • Sajjadi, H., A. A. Delouei, M. Atashafrooz, and M. Sheikholeslami. 2018a. Double MRT lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. International Journal of Heat and Mass Transfer 126:489–503. doi: 10.1016/j.ijheatmasstransfer.2018.05.064.
  • Sajjadi, H., A. Amiri Delouei, and G. Ahmadi. 2021. Investigation of the ventilation system inlet location effect on particle motion in a room using MRT-LBM. Amirkabir Journal of Mechanical Engineering 53:6.
  • Sajjadi, H., A. Amiri Delouei, M. Izadi, and R. Mohebbi. 2019a. Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid. International Journal of Heat and Mass Transfer 132:1087–104. doi: 10.1016/j.ijheatmasstransfer.2018.12.060.
  • Sajjadi, H., A. Amiri Delouei, M. Sheikholeslami, M. Atashafrooz, and S. Succi. 2019b. Simulation of three dimensional MHD natural convection using double MRT lattice Boltzmann method. Physica A: Statistical Mechanics and Its Applications 515:474–96. doi: 10.1016/j.physa.2018.09.164.
  • Sajjadi, H., and G. R. Kefayati. 2016. MHD turbulent and laminar natural convection in a square cavity utilizing lattice Boltzmann method. Heat Transfer-Asian Research 45 (8):795–814. doi: 10.1002/htj.21191.
  • Sajjadi, H., M. Salmanzadeh, G. Ahmadi, and S. Jafari. 2016. Simulations of indoor airflow and particle dispersion and deposition by the lattice Boltzmann method using LES and RANS approaches. Building and Environment 102:1–12. doi: 10.1016/j.buildenv.2016.03.006.
  • Sajjadi, H., M. Salmanzadeh, G. Ahmadi, and S. Jafari. 2017a. Turbulent indoor airflow simulation using hybrid LES/RANS model utilizing lattice Boltzmann method. Computers & Fluids 150:66–73. doi: 10.1016/j.compfluid.2017.03.028.
  • Sajjadi, H., M. Salmanzadeh, G. Ahmadi, and S. Jafari. 2017b. Lattice Boltzmann method and RANS approach for simulation of turbulent flows and particle transport and deposition. Particuology 30:62–72. doi: 10.1016/j.partic.2016.02.004.
  • Sajjadi, H., M. Salmanzadeh, G. Ahmadi, and S. Jafari. 2018b. Investigation of particle deposition and dispersion using hybrid LES/RANS model based on lattice Boltzmann method. Scientia Iranica. Transaction B, Mechanical Engineering 25 (6):3173–82.
  • Sheikholeslami, M., S. A. Farshad, M. B. Gerdroodbary, and A. H. Alavi. 2022. Impact of new multiple twisted tapes on treatment of solar heat exchanger. The European Physical Journal Plus 137 (1):02157. doi: 10.1140/epjp/s13360-021-02157-6.
  • Sheikholeslami, M., and S. A. Farshad. 2021. Numerical simulation of effect of non-uniform solar irradiation on nanofluid turbulent flow. International Communications in Heat and Mass Transfer 129:105648. doi: 10.1016/j.icheatmasstransfer.2021.105648.
  • Xu, Z., Z. Han, and H. Qu. 2020. Comparison between Lagrangian and Eulerian approaches for prediction of particle deposition in turbulent flows. Powder Technology 360:141–50. doi: 10.1016/j.powtec.2019.09.084.
  • Zhang, T., and D. Che. 2016. Double MRT thermal lattice Boltzmann simulation for MHD natural convection of nanofluids in an inclined cavity with four square heat sources. International Journal of Heat and Mass Transfer 94:87–100. doi: 10.1016/j.ijheatmasstransfer.2015.11.071.
  • Zhang, Z., X. Chen, S. Mazumdar, T. Zhang, and Q. Chen. 2009. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup. Building and Environment 44 (1):85–94. doi: 10.1016/j.buildenv.2008.01.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.