126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of minimum and complete fluidization velocity and transport disengaging height of the segregated coal in a cold flow fluidized bed

&

References

  • Abdullah, M. Z., Z. Husain, and S. L. Yin Pong. 2003. Analysis of cold flow fluidization test results for various biomass fuels. Biomass and Bioenergy 24 (6):487–94. doi:10.1016/S0961-9534(02)00150-2.
  • Adánez, J., and J. C. Abanades. 1991. Minimum fluidization velocities of fluidized-bed coal-combustion solids. Powder Technology 67 (2):113–9. doi:10.1016/0032-5910(91)80147-B.
  • Amitin, A. V., I. G. Martyushin, and D. A. Gurevich. 1968. Dusting in the space above the bed in converters with a fluidized catalyst bed. Chemistry and Technology of Fuels and Oils 4 (3):181–4. doi:10.1007/BF00718533.
  • Anantharaman, A., R. A. Cocco, and J. W. Chew. 2018. Evaluation of correlations for minimum fluidization velocity (Umf) in gas-solid fluidization. Powder Technology 323:454–85. doi:10.1016/j.powtec.2017.10.016.
  • Babu, S. P., B. Shah, and A. Talwalkar. 1978. Fluidization correlations for coal gasification materials - Minimum fluidization velocity and fluidized bed expansion ratio. AIChE Symposium Series 74:176–86.
  • Baeyens, J., and D. Geldart. 1973. Predictive calculations of flow parameters in gas fluidized beds and fluidization behavior of various powders. Proc. Conf. La Fluidisation et Ses Applications, 226.
  • Bai, F., M. Fan, H. Yang, and L. Dong. 2021. Fast recognition using convolutional neural network for the coal particle density range based on images captured under multiple light sources. International Journal of Mining Science and Technology 31 (6):1053–61. doi:10.1016/j.ijmst.2021.09.004.
  • Barbosa, A. L., D. Steinmetz, and H. Angelino. 1995. Heat transfer around spherical probes at high temperatures in a fluidized bed. In Fluidization VIII, ed. J.-F. Large and C. Laguerie, 177–86. New York, NY: Engineering foundation.
  • Baron, T., C. L. Briens, and M. A. Bergougnou. 1988. Study of the transport disengaging height. The Canadian Journal of Chemical Engineering 66 (5):749–60. doi:10.1002/cjce.5450660508.
  • Baron, T., C. L. Briens, M. A. Bergougnou, and J. D. Hazlett. 1987. Electrostatic effects on entrainment from a fluidized-bed. Powder Technology 53 (1):55–67. doi:10.1016/0032-5910(87)80125-0.
  • Biń, A. K. 1994. Prediction of the minimum fluidization velocity. Powder Technology 81 (2):197–9. doi:10.1016/0032-5910(94)02868-0.
  • Bourgeois, P., and P. Grenier. 1968. The ratio of terminal velocity to minimum fluidising velocity for spherical particles. The Canadian Journal of Chemical Engineering 46 (5):325–8. doi:10.1002/cjce.5450460508.
  • Brems, A., C. W. Chan, J. P. Seville, D. Parker, and J. Baeyens. 2011. Modelling the transport disengagement height in fluidized beds. Advanced Powder Technology 22 (2):155–61. doi:10.1016/j.apt.2010.07.012.
  • Cahyadi, A., A. H. Neumayer, C. M. Hrenya, R. A. Cocco, and J. W. Chew. 2015. Comparative study of transport disengaging height (TDH) correlations in gas-solid fluidization. Powder Technology 275:220–38. doi:10.1016/j.powtec.2015.02.010.
  • Chen, Z. D., X. P. Chen, Y. Wu, and R. C. Chen. 2010. Study on minimum fluidization velocity at elevated temperature. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering 30:21–5.
  • Chitester, D. C., R. M. Kornosky, L. S. Fan, and J. P. Danko. 1984. Characteristics of fluidization at high pressure. Chemical Engineering Science 39 (2):253–61. doi:10.1016/0009-2509(84)80025-1.
  • Chok, V. S., A. Gorin, and H. B. Chua. 2010. Minimum and complete fluidization velocity for sand-palm shell mixtures, part II: Characteristic velocity profiles, critical loading and binary correlations. American Journal of Applied Sciences 7 (6):773–9. doi:10.3844/ajassp.2010.773.779.
  • Chyang, C. S., and W. C. Huang. 1988. Characteristics of large particle fluidization. Journal of the Chinese Institute of Chemical Engineers 19 (2):81–9.
  • Coltters, R., and A. L. Rivas. 2004. Minimum fluidation velocity correlations in particulate systems. Powder Technology 147 (1-3):34–48. doi:10.1016/j.powtec.2004.06.013.
  • Davtyan, G. A., V. G. Ainshtein, R. V. Girgoryan, and M. G. Amamchyeen. 1976. Izv. Akd. Nauk, Arm. SSR. Ser. Tekh. Nauk 26:36.
  • Delebarre, A. 2004. Revisiting the Wen and Yu equations for minimum fluidization velocity prediction. Chemical Engineering Research and Design 82 (5):587–90. doi:10.1205/026387604323142621.
  • de Vasconcelos, P. D. S., and A. L. Amarante Mesquita. 2011. Minimum and full fluidization velocity for alumina used in the aluminum smelter. International Journal of Engineering Business Management 3 (4):23. doi:10.5772/50943.
  • Dewangan, G. P., and S. N. Saha. 2021. Fluidization characteristics of sawdust in a cold flow fluidized bed. Journal of the Indian Chemical Society 98 (12):100235. doi:10.1016/j.jics.2021.100235.
  • Doichev, K., and N. S. Akhmakov. 1979. Fluidisation of polydisperse systems. Chemical Engineering Science 34 (11):1357–9. doi:10.1016/0009-2509(79)80032-9.
  • Duan, C., J. Yuan, M. Pan, T. Huang, H. Jiang, Y. Zhao, J. Qiao, W. Wang, S. Yu, and J. Lu. 2021. Variable elliptical vibrating screen: Particles kinematics and industrial application. International Journal of Mining Science and Technology 31 (6):1013–22. doi:10.1016/j.ijmst.2021.07.006.
  • Fatah, H. 1991. INP-Toulouse. Toulouse, France.
  • Fletcher, J. V., M. D. Deo, and F. V. Hanson. 1992. Re-examination of minimum fluidization velocity correlations applied to group B sands and coked sands. Powder Technology 69 (2):147–55. doi:10.1016/0032-5910(92)85068-7.
  • Fournol, A. B., M. A. Bergougnou, and C. G. J. Baker. 1973. Solids entrainment in a large gas fluidized-bed. The Canadian Journal of Chemical Engineering 51 (4):401–4. doi:10.1002/cjce.5450510402.
  • Frantz, J. F. 1966. Minimum fluidization velocities and pressure in fluidized beds. Chemical Engineering Progress Symposium Series 62:21.
  • Frantz, J. F., and W. G. Juhl. 1972. Transport disengaging heights in fluidized beds. In Seventy-first national meeting, Dallas, TX: AIChE. https://ci.nii.ac.jp/naid/10003395402/.
  • Fu, Y., W. Chen, D. Su, B. Lv, and Z. Luo. 2020. Spatial characteristics of fluidization and separation in a gas-solid dense-phase fluidized bed. Powder Technology 362:246–56. doi:10.1016/j.powtec.2019.11.065.
  • Fung, A. S., and F. Hamdullahpur. 1993. Effect of bubble coalescence on entrainment in gas fluidized beds. Powder Technology 77 (3):251–65. doi:10.1016/0032-5910(93)85018-5.
  • Gauthier, D., S. Zerguerras, and G. Flamant. 1999. Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization. Chemical Engineering Journal 74 (3):181–96. doi:10.1016/S1385-8947(99)00075-3.
  • Geldart, D. 1972. The effect of particle size and size distribution on the behaviour of gas-fluidised beds. Powder Technology 6 (4):201–15. doi:10.1016/0032-5910(72)83014-6.
  • Geldart, D. 1973. Types of gas fluidization. Powder Technology 7 (5):285–92. doi:10.1016/0032-5910(73)80037-3.
  • George, S. E., and J. R. Grace. 1978. Entrainment of particles from aggregative fluidized beds. AICHE Symposia Series 74:67–74.
  • Goo, J. H., M. W. Seo, S. D. Kim, and B. H. Song. 2009. Effects of temperature and particle size on minimum fluidization and transport velocities in a dual fluidized bed. In Proceedings of the 20th international conference on fluidized bed combustion, ed. G. Yue, H. Zhang, C. Zhao, and Z. Luo, 305–10. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-02682-9_43.
  • Grace, J. R. 1982. Handbook of multiphase systems. New York, NY: Hemisphere Press.
  • Gupta, S., and S. De. 2021. Numerical investigation of cold flow hydrodynamics in an internally circulating dual fluidized bed for coal gasification. Particulate Science and Technology 39 (4):401–14. doi:10.1080/02726351.2020.1743399.
  • Hamdullahpur, F., and G. D. MacKay. 1986. Two‐phase flow behavior in the freeboard of a gas‐fluidized bed. AIChE Journal 32 (12):2047–55. doi:10.1002/aic.690321215.
  • Hartman, M., M. Pohořelý, and O. Trnka. 2007. Fluidization of dried wastewater sludge. Powder Technology 178 (3):166–72. doi:10.1016/j.powtec.2007.04.016.
  • Hartman, M., O. Trnka, and K. Svoboda. 2000. Fluidization characteristics of dolomite and calcined dolomite particles. Chemical Engineering Science 55 (24):6269–74. doi:10.1016/S0009-2509(00)00409-7.
  • Hatano, H., and M. Ishida. 1983. Study on the entrainment of FCC particles from a fluidized bed. Powder Technology 35 (2):201–9. doi:10.1016/0032-5910(83)87010-7.
  • Hilal, N., M. T. Ghannam, and M. Z. Anabtawi. 2001. Effect of bed diameter. Chemical Engineering & Technology 24 (2):161–5. doi:10.1002/1521-4125(200102)24:2<161::AID-CEAT161>3.0.CO;2-S.
  • Ho, T. C., S. J. Yau, and J. R. Hopper. 1987. Hydrodynamics of semi-fluidization in gas-solid systems. Powder Technology 50 (1):25–34. doi:10.1016/0032-5910(87)80080-3.
  • Horio, M., T. Shibata, and I. Muchi. 1983. Design criteria for the fluidized bed freeboard. Paper presented at the 4th International Conference on Fluidization, Kashikojima, Japan.
  • Horio, M., A. Taki, Y. S. Hsieh, and I. Muchi. 1980. Elutriation and particle transport through the freeboard of a gas-solid fluidized bed. In Fluidization, ed. J. R. Grace and J. M. Matsen. Boston, MA: Springer.
  • Hu, S., J. Li, X. Yang, Y. Chen, F. Li, J. Wang, C. Wu, L. Weng, and K. Liu. 2020. Improvement on slurry ability and combustion dynamics of low quality coals with ultra-high ash content. Chemical Engineering Research and Design 156:391–401. doi:10.1016/j.cherd.2020.02.011.
  • Jiliang, M., C. Xiaoping, and L. Daoyin. 2013. Minimum fluidization velocity of particles with wide size distribution at high temperatures. Powder Technology 235:271–8. doi:10.1016/j.powtec.2012.10.016.
  • Kim, Y. T., B. H. Song, and S. D. Kim. 1997. Entrainment of solids in an internally circulating fluidized bed with draft tube. Chemical Engineering Journal 66 (2):105–10. doi:10.1016/S1385-8947(96)03166-X.
  • Ko, C. K., J.-H. Choi, W. Namkung, and S. D. Kim. 2012. Transport disengaging height of iron ore particles in a fluidized bed. Journal of Chemical Engineering of Japan 45 (3):166–73. doi:10.1252/jcej.11we197.
  • Kozanoglu, B. U., J. Welti Chanes, D. Garcı́a Cuautle, and J. P. Santos Jean. 2002. Hydrodynamics of large particle fluidization in reduced pressure operations: An experimental study. Powder Technology 125 (1):55–60. doi:10.1016/S0032-5910(01)00524-1.
  • Kumar, A., and P. S. Gupta. 1974. Prediction of minimum fluidization velocity for multicomponent mixtures. Indian Journal of Technology12 (5):225–7.
  • Kunii, D., and O. Levenspiel. 1991. Fluidization engineering. 2nd ed. Newton, MA: Butterworth-Heinemann.
  • Leon, M. A., and A. Dutta. 2010. Fluidization characteristics of rice husk in a bubbling fluidized bed. The Canadian Journal of Chemical Engineering 88 (1):18–22. doi:10.1002/cjce.20245.
  • Leva, M. 1959. Fluidization. New York, NY: McGraw Hill.
  • Llop, M. F., F. Madrid, J. Arnaldos, and J. Casal. 1996. Fluidization at vacuum conditions. A generalized equation for the prediction of minimum fluidization velocity. Chemical Engineering Science 51 (23):5149–57. doi:10.1016/S0009-2509(96)00351-X.
  • Lucas, A., J. Arnaldos, J. Casal, and L. Puigjaner. 1986. High temperature incipient fluidization in mono and polydisperse systems. Chemical Engineering Communications 41 (1-6):121–32. doi:10.1080/00986448608911715.
  • Maeno, N., and K. Nishimura. 1979. Fluidization of snow. Cold Regions Science and Technology 1 (2):109–20. doi:10.1016/0165-232X(79)90004-1.
  • Mandal, D., M. Vinjamur, and D. Sathiyamoorthy. 2013. Hydrodynamics of beds of small particles in the voids of coarse particles. Powder Technology 235:256–62. doi:10.1016/j.powtec.2012.10.029.
  • Miller, C. O., and A. K. Logwinuk. 1951. Fluidization studies of solid particles. Industrial & Engineering Chemistry 43 (5):1220–6. doi:10.1021/ie50497a059.
  • Mohanta, S., A. Babu Daram, S. Chakraborty, and B. C. Meikap. 2012. Characteristics of minimum fluidization velocity for magnetite powder used in an air dense medium fluidized bed for coal beneficiation. Particle & Particle Systems Characterization 29 (4):228–37. doi:10.1002/ppsc.201100020.
  • Mourad, M., M. Hemati, and C. Laguerie. 1994. Hydrodynamique d’un Séchoir à Lit Fluidisé a Flottation: Détermination Des Vitesses Caractéristiques de Fluidisation de Mélanges de Maïs et de Sable. Powder Technology 80 (1):45–54. doi:10.1016/0032-5910(94)87004-7.
  • Nakamura, M., Y. Hamada, S. Toyama, A. E. Fouda, and C. E. Capes. 1985. An experimental investigation of minimum fluidization velocity at elevated temperatures and pressures. The Canadian Journal of Chemical Engineering 63 (1):8–13. doi:10.1002/cjce.5450630103.
  • Noda, K., S. Uchida, T. Makino, and H. Kamo. 1986. Minimum fluidization velocity of binary mixture of particles with large size ratio. Powder Technology 46 (2-3):149–54. doi:10.1016/0032-5910(86)80021-3.
  • Oliveira, T. J., C. R. Cardoso, and C. H. Ataíde. 2013. Bubbling fluidization of biomass and sand binary mixtures: Minimum fluidization velocity and particle segregation. Chemical Engineering and Processing: Process Intensification 72:113–21. doi:10.1016/j.cep.2013.06.010.
  • Panigrahi, M. R., and J. S. Murty. 1991. A generalized spherical multi-particle model for particulate systems: Fixed and fluidized beds. Chemical Engineering Science 46 (7):1863–8. doi:10.1016/0009-2509(91)87033-9.
  • Park, H. C., and H. S. Choi. 2019. Numerical study of the segregation of pyrolized char in a bubbling fluidized bed according to distributor configuration. Powder Technology 355:637–48. doi:10.1016/j.powtec.2019.07.084.
  • Pattipati, R. R., and C. Y. Wen. 1981. Minimum fluidization velocity at high temperatures. Industrial & Engineering Chemistry Process Design and Development 20 (4):705–7. doi:10.1021/i200015a022.
  • Paudel, B., and Z. G. Feng. 2013. Prediction of minimum fluidization velocity for binary mixtures of biomass and inert particles. Powder Technology 237:134–40. doi:10.1016/j.powtec.2013.01.031.
  • Pemberton, S. T., and J. F. Davidson. 1986. Elutriation from fluidized-beds-II. Disengagement of particles from gas in the freeboard. Chemical Engineering Science 41 (2):253–62. doi:10.1016/0009-2509(86)87006-3.
  • Pérez, N. P., D. T. Pedroso, E. B. Machin, J. S. Antunes, R. A. Verdú Ramos, and J. L. Silveira. 2018. Prediction of the minimum fluidization velocity of particles of sugarcane bagasse. Biomass and Bioenergy 109:249–56. doi:10.1016/j.biombioe.2017.12.004.
  • Pillai, B. C., and M. Raja Rao. 1971. Pressure drop and minimum fluidization velocities in air-fluidized beds. Indian Journal of Technology 9 (9):77.
  • Rabinovich, E., and H. Kalman. 2008. Generalized master curve for threshold superficial velocities in particle-fluid systems. Powder Technology 183 (2):304–13. doi:10.1016/j.powtec.2007.07.030.
  • Rao, T. R., and J. V. R. Bheemarasetti. 2001. Minimum fluidization velocities of mixtures of biomass and sands. Energy 26 (6):633–44. doi:10.1016/S0360-5442(01)00014-7.
  • Reina, J., E. Velo, and L. Puigjaner. 2000. Predicting the minimum fluidization velocity of polydisperse mixtures of scrap-wood particles. Powder Technology 111 (3):245–51. doi:10.1016/S0032-5910(00)00226-6.
  • Riba, J. P., R. Routie, and J. P. Couderc. 1978. Minimum conditions for fluidisation by a liquid. Canadian Journal of Chemical Engineering 56:26–30.
  • Richardson, J. F., and M. A. Da. 1979. Velocity-voidage relations for sedimentation and fluidisation. Chemical Engineering Science 34 (12):1419–22. doi:10.1016/0009-2509(79)85167-2.
  • Richardson, L., and J. Davies. 1966. Gas interchange between bubbles and the continuous phase in a fluidized bed. Transaction of Institution of Chemical Engineers 44:293–305.
  • Rowe, P. N., and G. A. Henwood. 1961. Drag forces in a hydraulic model of a fluidised bed. Transactions of the Institution of Chemical Engineers 39 (a):43–54.
  • Saha, S. N., and G. P. Dewangan. 2015a. Activated carbon from coconut shell using fluidized bed reactor and its simulation. International Journal of Engineering Studies and Technical Approaches 1:35–45.
  • Saha, S. N., and G. P. Dewangan. 2015b. Modeling and simulation of fluidized bed catalytic reactor regenerator. International Journal of Engineering Technology Science and Research 2 (9):46–54.
  • Saha, S. N., and H. Pradesh. 2016. Gas-liquid-solid fluidized bed simulation by computational fluid dynamics. International Journal of Advanced Research in Chemical Science 3 (2):1–8. doi:10.20431/2349-0403.0302001.
  • Sathyanarayana, K., and P. G. Rao. 1989. Minimum fluidization at elevated temperatures. Indian Chemical Engineering 31:79.
  • Saxena, S. C., and G. J. Vogel. 1977. The measurement of incipient fluidization velocities in a bed of course dolomite at temperature and pressure. Transaction of Institution of Chemical Engineering 55:184.
  • Sciążko, M., J. Bandrowski, and J. Raczek. 1991. On the entrainment of solid particles from a fluidized bed. Powder Technology 66 (1):33–9. doi:10.1016/0032-5910(91)80078-W.
  • Ściążko, M., J. Raczek, and J. Bandrowski. 1988. Model of gas flow above a bubbling fluidized bed: Prediction of splash zone height. Chemical Engineering and Processing: Process Intensification 24 (1):49–55. doi:10.1016/0255-2701(88)87005-3.
  • Seo, M. W., J. H. Goo, S. D. Kim, J. Goo Lee, Y. T. Guahk, N. S. Rho, G. H. Koo, D. Y. Lee, W. C. Cho, and B. H. Song. 2014. The transition velocities in a dual circulating fluidized bed reactor with variation of temperatures. Powder Technology 264:583–91. doi:10.1016/j.powtec.2014.05.059.
  • Singh, R. K., and G. K. Roy. 2008. Prediction of minimum slugging velocity, bubbling bed index and range of bubbling fluidization in cylindrical and non-cylindrical gas-solid fluidized beds. Indian Journal of Chemical Technology 15 (1):85–9.
  • Smolders, K., and J. Baeyens. 1997. Elutriation of fines from gas fluidized beds: Mechanisms of elutriation and effect of freeboard geometry. Powder Technology 92 (1):35–46. doi:10.1016/S0032-5910(97)03214-2.
  • Soroko, V. E., M. F. Mikhalev, and I. P. Mukhleno. 1969. Calculation of minimum height of space above bed in fluidized-bed contact equipment. International Chemical Engineering 9:280–1.
  • Srinivasa Rao, K. V. N., and G. Venkat Reddy. 2008. Effect of secondary air injection on the combustion efficiency of sawdust in a fluidized bed combustor. Brazilian Journal of Chemical Engineering 25 (1):129–41. doi:10.1590/S0104-66322008000100014.
  • Sriramoju, S. K., D. Kumar, S. Majumdar, P. S. Dash, D. Shee, and R. Banerjee. 2021. Sustainability of coal mines: Separation of clean coal from the fine-coal rejects by ultra-fine grinding and density-gradient-centrifugation. Powder Technology 383:356–70. doi:10.1016/j.powtec.2021.01.061.
  • Subramani, H. J., M. B. Mothivel Balaiyya, and L. R. Miranda. 2007. Minimum fluidization velocity at elevated temperatures for Geldart’s group-B powders. Experimental Thermal and Fluid Science 32 (1):166–73. doi:10.1016/j.expthermflusci.2007.03.003.
  • Tanaka, I., and H. Shinohara. 1978. Estimation of column height of a fluidized-bed. International Chemical Engineering 18:276.
  • Tannous, K. 1993. INP-Toulouse. Toulouse, France.
  • Tannous, K., M. Hemati, and C. Laguerie. 1994. Caractéristiques Au Minimum de Fluidisation et Expansion Des Couches Fluidisées de Particules de La Catégorie D de Geldart. Powder Technology 80 (1):55–72. doi:10.1016/0032-5910(94)02841-9.
  • Tannous, K., and J. B. Lourenço. 2015. Fluid dynamic and mixing characteristics of biomass particles in fluidized beds. In Innovative Solutions in Fluid-Particle Systems and Renewable Energy Management, 54–91. doi:10.4018/978-1-4666-8711-0.ch003.
  • Thonglimp, V., N. Hiquily, and C. Laguerie. 1984a. Vitesse Minimale de Fluidisation et Expansion Des Couches de Mélanges de Particules Solides Fluidisées Par Un Gaz. Powder Technology 39 (2):223–39. doi:10.1016/0032-5910(84)85040-8.
  • Thonglimp, V., N. Hiquily, and C. Laguerie. 1984b. Vitesse Minimale de Fluidisation et Expansion Des Couches Fluidisées Par Un Gaz. Powder Technology 38 (3):233–53. doi:10.1016/0032-5910(84)85006-8.
  • Todes, O. M., R. B. Goroshkov, and R. B. Rozenbaum. 1957. Izv. Vyssh. Uchcbn. Zaved. Neft Gaz 1.
  • Vaid, R. P., and P. Sen Gupta. 1978. Minimum fluidization velocities in beds of mixed solids. The Canadian Journal of Chemical Engineering 56 (3):292–6. doi:10.1002/cjce.5450560304.
  • Venugopal, R., J. P. Patel, and C. Bhar. 2016. Coal washing scenario in India and future prospects. International Journal of Coal Science & Technology 3 (2):191–7. doi:10.1007/s40789-016-0133-2.
  • Wen, C. Y., and L. H. Chen. 1982. Fluidized bed freeboard phenomena: Entrainment and elutriation. AIChE Journal 28 (1):117–28. doi:10.1002/aic.690280117.
  • Wen, C. Y., and Y. H. Yu. 1966. A generalized method for predicting the minimum fluidization velocity. AIChE Journal 12 (3):610–2. doi:10.1002/aic.690120343.
  • Wu, S. Y., and J. Baeyens. 1991. Effect of operating temperature on minimum fluidization velocity. Powder Technology 67 (2):217–20. doi:10.1016/0032-5910(91)80158-F.
  • Wu, X., K. Li, F. Song, and X. Zhu. 2017. Fluidization behavior of biomass particles and its improvement in a cold visualized fluidized bed. BioResources 12 (2):3546–59. doi:10.15376/biores.12.2.3546-3559.
  • Xie, H. Y., and D. Geldart. 1995. Fluidization of FCC powders in the bubble-free regime: Effect of types of gases and temperature. Powder Technology 82 (3):269–77. doi:10.1016/0032-5910(94)02932-E.
  • Yang, X., Y. Zhang, S. Wang, and W. Wu. 2020. Parametric evaluation and performance optimization of fine coal separation in a vibrated gas-fluidized bed using response surface methodology. Particulate Science and Technology 38 (6):652–8. doi:10.1080/02726351.2019.1603174.
  • Yoon, Y. S., S. D. Kim, and W. H. Park. 1986. Entrainment of coal particles in a gas fluidized bed. Korean Journal of Chemical Engineering 3 (2):121–5. doi:10.1007/BF02705023.
  • Zarekar, S., A. Bück, M. Jacob, and E. Tsotsas. 2016. Reconsideration of the hydrodynamic behavior of fluidized beds operated under reduced pressure. Powder Technology 287:169–76. doi:10.1016/j.powtec.2015.09.027.
  • Zenz, F. A., and N. A. Weil. 1958. A theoretical‐empirical approach to the mechanism of particle entrainment from fluidized beds. AIChE Journal 4 (4):472–9. doi:10.1002/aic.690040417.
  • Zheng, Z. X., R. Yamazaki, and J. Jimbo. 1985. Minimum fluidization velocity of large particles at elevated temperatures. Kagaku Kogaku Rombunsha 11:115–7.
  • Zhiping, Z., N. Yongjie, and L. Qinggang. 2007. Effect of pressure on minimum fluidization velocity. Journal of Thermal Science 16 (3):264–9. doi:10.1007/s11630-007-0264-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.