147
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of recycled TiC addition in the compaction and sintering behavior of Al-Mg-Cu-Zn + r-TiC powder metallurgy composites

& ORCID Icon

References

  • Akin, I. D., and W. J. Likos. 2017. Brazilian tensile strength testing of compacted clay. Geotechnical Testing Journal 40 (4):20160180. doi:10.1520/GTJ20160180.
  • Azimi, A., A. Shokuhfar, and O. Nejadseyfi. 2015. Mechanically alloyed Al7075-TiC nanocomposite: Powder processing, consolidation and mechanical strength. Materials & Design 66 (PA):137–41. doi:10.1016/j.matdes.2014.10.046.
  • B331. 2016. Standard test method for compressibility of metal powders in uniaxial compaction. ASTM Standard. doi:10.1520/D2875-00R10.2.
  • Baskaran, S., V. Anandakrishnan, and M. Duraiselvam. 2014. Investigations on dry sliding wear behavior of in situ casted AA7075-TiC metal matrix composites by using Taguchi technique. Materials & Design 60:184–92. doi:10.1016/j.matdes.2014.03.074.
  • Baskaran, S., V. Anandakrishanan, M. Duraiselvam, and N. Keerthivasan. 2015. A study on dry sliding friction behaviour of Tic reinforced Aa7075 in-situ composites by Taguchi. International Journal of Mechanical and Production Engineering 3 (3):9–12.
  • Bhushan, R. K., S. Kumar, and S. Das. 2013. Fabrication and characterization of 7075 Al alloy reinforced with SiC particulates. The International Journal of Advanced Manufacturing Technology 65 (5–8):611–24. doi:10.1007/s00170-012-4200-6.
  • Cooper, A. R., and L. E. Eaton. 1962. Compaction behavior of several ceramic powders. Journal of the American Ceramic Society 45 (3):97–101. doi:10.1111/j.1151-2916.1962.tb11092.x.
  • David Raja Selvam, J., and I. Dinaharan. 2017. In situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites. Engineering Science and Technology: An International Journal 20 (1):187–96. doi:10.1016/j.jestch.2016.09.006.
  • Denny, P. J. 2002. Compaction equations: A comparison of the Heckel and Kawakita equations. Powder Technology 127 (2):162–72. doi:10.1016/S0032-5910(02)00111-0.
  • Dong, B. X., H. Y. Yang, F. Qiu, Q. Li, S. L. Shu, B. Q. Zhang, and Q. C. Jiang. 2019. Design of TiCx nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation. Materials & Design 181:107951. doi:10.1016/j.matdes.2019.107951.
  • Ge, R. 1991. A new powder compaction equation. International Journal of Powder Metallurgy 27:211–6.
  • Hafizpour, H. R., and A. Simchi. 2008. Investigation on compressibility of Al-SiC composite powders. Powder Metallurgy 51 (3):217–23. doi: 10.1179/174329007X22250.
  • Hafizpour, H. R., A. Simchi, and S. Parvizi. 2010. Analysis of the compaction behavior of Al-SiC nanocomposites using linear and non-linear compaction equations. Advanced Powder Technology 21 (3):273–8. doi:10.1016/j.apt.2009.12.003.
  • Heckel, R. W. 1961. Density-pressure relationships in powder compaction. Transactions of the Metallurgical Society of AIME 221:671–5. doi:10.1007/978-3-642-16416-3_17.
  • Ibrahim, A., D. P. Bishop, and G. J. Kipouros. 2015. Sinterability and characterization of commercial aluminum powder metallurgy alloy Alumix 321. Powder Technology 279:106–12. doi:10.1016/j.powtec.2015.04.001.
  • Jeyasimman, D., K. Sivaprasad, S. Sivasankaran, and R. Narayanasamy. 2014. Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes. Powder Technology 258:189–97. doi:10.1016/j.powtec.2014.03.039.
  • Jeyasimman, D., S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and R. S. Kambali. 2014. An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying. Materials & Design 57:394–404. doi:10.1016/j.matdes.2013.12.067.
  • Jonsén, P., H. Häggblad, and K. Sommer. 2007. Tensile strength and fracture energy of pressed metal powder by diametral compression test. Powder Technology 176 (2–3):148–55. doi:10.1016/j.powtec.2007.02.030.
  • Karunanithi, R., K. S. Ghosh, and S. Bera. 2014. Effect of dispersoid size and volume fraction on aging behavior and mechanical properties of TiO2-dispersed AA7075 alloy composites. Metallurgical and Materials Transactions A 45 (9):4062–72. doi:10.1007/s11661-014-2337-7.
  • Kawakita, K., and K. H. Lüdde. 1971. Some considerations on powder compression equations. Powder Technology 4 (2):61–8. doi:10.1016/0032-5910(71)80001-3.
  • Kumar, S., and V. Balasubramanian. 2010. Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites–a statistical analysis. Tribology International 43 (1–2):414–22. doi:10.1016/j.triboint.2009.07.003.
  • Lampman, S. 2018. Compressibility and compactibility of metal powders. In ASM handbook, volume 7: Powder metallurgy, 171–8. ASM International. doi:10.31399/asm.hb.v07.a0006032.
  • Mhadhbi, M. 2020. Titanium carbide: Synthesis, properties and applications. Brilliant Engineering 2 (2):1–11. doi:10.36937/ben.2021.002.001.
  • Mohr, A., A. Röttger, and W. Theisen. 2017. Characterization of recycled TiC and its influence on the microstructural, tribological, and corrosion properties of a TiC-reinforced metal matrix composites. Journal of Composite Materials 51 (26):3611–21. doi:10.1177/0021998317692032.
  • Neikov, O. D., and N. A. Yefimov. 2019. Powder characterization and testing. In Handbook of non-ferrous metal powders. 2nd ed. Elsevier Ltd. doi:10.1016/b978-0-08-100543-9.00001-4.
  • Oikonomou, C., E. Hryha, Å. Ahlin, and L. Nyborg. 2013. Effect of powder properties on the compressibility of water-atomized iron and low-alloyed steel grades. In International Powder Metallurgy Congress and Exhibition, Euro PM 2013, January 2013.
  • Panelli, R., and F. Ambrozio Filho. 2001. A study of a new phenomenological compacting equation. Powder Technology 114 (1–3):255–61. doi:10.1016/S0032-5910(00)00207-2.
  • Petroni, S. L. G. 2020. PM compaction equations applied for the modelling of titanium hydride powders compressibility data. Powder Metallurgy 63 (1):35–42. doi:10.1080/00325899.2019.1710339.
  • Radhakrishnan, R. M., V. Ramamoorthi, and R. Srinivasan. 2022. Experimental investigation on powder processing and its flow properties of AlSi10Mg alloy with niobium carbide for additive manufacturing. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 236 (4):1421–9. doi:10.1177/09544089211062774.
  • Ramírez-Vinasco, D., C. A. León-Patiño, E. A. Aguilar-Reyes, and G. Rodríguez-Ortiz. 2022. Compressibility behaviour of conventional AlN-Cu mixtures and Cu-(AlN-Cu) composite powder mixtures. Powder Technology 403:117385. doi:10.1016/j.powtec.2022.117385.
  • Rashidi, K., M. Moazami-Goudarzi, and A. Masoudi. 2020. Powder processing, characterization and mechanical properties of Al/GNP composites. Materials Chemistry and Physics 256 (February):123719. doi:10.1016/j.matchemphys.2020.123719.
  • Ravichandran, M., and V. Anandakrishnan. 2015. Optimization of powder metallurgy parameters to attain maximum strength coefficient in Al-10 Wt% MoO3 composite. Journal of Materials Research 30 (15):2380–7. doi:10.1557/jmr.2015.211.
  • Razavi Hesabi, Z., H. R. Hafizpour, and A. Simchi. 2007. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Materials Science and Engineering: A 454–455:89–98. doi:10.1016/j.msea.2006.11.129.
  • Reddy, S. P., P. V. Chandrasekhara Rao, M. Kolli, and A. O. Fly Ash. 2020. Effect of reinforcement on compacting characteristics of aluminum/10-Al2O3/fly ash metal matrix composite. Journal of Testing and Evaluation 48 (2):20170505. doi:10.1520/JTE20170505.
  • Salur, E., A. Aslan, M. Kuntoğlu, and M. Acarer. 2021. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Advanced Powder Technology 32 (10):3826–44. doi:10.1016/j.apt.2021.08.031.
  • Saw, H. Y., C. E. Davies, A. H. Paterson, and J. R. Jones. 2015. Correlation between powder flow properties measured by shear testing and Hausner ratio. Procedia Engineering 102 (December):218–25. doi:10.1016/j.proeng.2015.01.132.
  • Shahmohammadi, M., A. Simchi, H. Danninger, and A. Arvand. 2007. An investigation on the sintering behavior of high strength Al-Zn-Mg-Cu alloy prepared from elemental powders. Materials Science Forum 534–536 (PART 1):489–92. doi:10.4028/www.scientific.net/MSF.534-536.489.
  • Sivasankaran, S., K. Sivaprasad, R. Narayanasamy, and V. K. Iyer. 2010. Synthesis, structure and sinterability of 6061 AA100-x-x Wt.% TiO2 composites prepared by high-energy ball milling. Journal of Alloys and Compounds 491 (1–2):712–21. doi:10.1016/j.jallcom.2009.11.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.