2,786
Views
18
CrossRef citations to date
0
Altmetric
Rapid Communication

Modeling operational cement rotary kiln variables with explainable artificial intelligence methods – a “conscious lab” development

, ORCID Icon, , , & ORCID Icon

References

  • Abbasniya, M. R., S. A. Sheikholeslamzadeh, H. Nasiri, and S. Emami. 2022. Classification of breast tumors based on histopathology images using deep features and ensemble of gradient boosting methods. Computers and Electrical Engineering 103: 108382. doi:10.1016/j.compeleceng.2022.108382.
  • Akalp, M., A. L. Dominguez, and R. Longchamp. 1994. Supervisory fuzzy control of a rotary cement kiln. Proceedings of MELECON’94. Mediterranean Electrotechnical Conference, 754–7.
  • Alidokht, M., S. Yazdani, E. Hadavandi, and S. C. Chelgani. 2021. Modeling metallurgical responses of coal tri-flo separators by a novel BNN: A ‘conscious-lab’ development. International Journal of Coal Science & Technology 8 (6):1436–46. doi:10.1007/s40789-021-00423-7.
  • Alsop, P. A, and J. W. Post. 1995. Cement plant: Operations handbook. Dorking, Surrey: Tradeship.
  • Arad, S., V. Arad, and B. Bobora. 2008. Advanced control schemes for cement fabrication processes. London: Intech.
  • Awad, M, and R. Khanna. 2015. Support vector regression. In Efficient learning machines, 67–80. Berkeley, CA: Apress.
  • Boateng, A. A. 2008. Rotary kilns: Transport phenomena and transport process, Jordan Hill, Oxford: Linacre House.
  • Boateng, A. A. 2015. Rotary kilns: Transport phenomena and transport processes. Oxford: Butterworth-Heinemann.
  • Breiman, L. 2001. Random forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Bui, R. T., S. Tarasiewicz, and A. Charette. 1982. A computer model for the cement kiln. IEEE Transactions on Industry Applications, IA-18 (4):424–30.
  • Bussmann, N., P. Giudici, D. Marinelli, and J. Papenbrock. 2021. Explainable machine learning in credit risk management. Computational Economics 57 (1):203–16. doi:10.1007/s10614-020-10042-0.
  • Chelgani, S. C. 2019. Prediction of specific gravity of afghan coal based on conventional coal properties by stepwise regression and random forest. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 41:1–12.
  • Chelgani, S. C., H. Nasiri, and A. Tohry. 2021. Modeling of particle sizes for industrial HPGR products by a unique explainable AI tool – A ‘conscious lab’ development. Advanced Powder Technology 32 (11):4141–8. doi:10.1016/j.apt.2021.09.020.
  • Chelgani, S. C. 2021. Estimation of gross calorific value based on coal analysis using an explainable artificial intelligence. Machine Learning with Applications 6:100116. doi:10.1016/j.mlwa.2021.100116.
  • Chelgani, S. C., H. Nasiri, and M. Alidokht. 2021. Interpretable modeling of metallurgical responses for an industrial coal column flotation circuit by XGBoost and SHAP – A ‘conscious-lab’ development. International Journal of Mining Science and Technology 31 (6):1135–44. doi:10.1016/j.ijmst.2021.10.006.
  • Chelgani, S. C., and S. Makaremi. 2013. Explaining the relationship between common coal analyses and afghan coal parameters using statistical modeling methods. Fuel Processing Technology 110:79–85. doi:10.1016/j.fuproc.2012.11.005.
  • Chen, T, and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–94.
  • Chipakwe, V., P. Semsari, T. Karlkvist, J. Rosenkranz, and S. C. Chelgani. 2020. A critical review on the mechanisms of chemical additives used in grinding and their effects on the downstream processes. Journal of Materials Research and Technology 9 (4):8148–62. doi:10.1016/j.jmrt.2020.05.080.
  • Coskun, C. 2019. A time-varying carbon intensity approach for demand-side management strategies with respect to CO2 emission reduction in the electricity grid. International Journal of Global Warming 19 (1/2):3–23. doi:10.1504/IJGW.2019.101768.
  • Delong, J. H, and R. C. Aitken. 1981. Factorial analysis of a cement kiln. Applied Mathematical Modelling 5 (5):341–7. doi:10.1016/S0307-904X(81)80056-X.
  • Ezzoddin, M., H. Nasiri, and M. Dorrigiv. 2022. Diagnosis of COVID-19 cases from chest X-ray images using deep neural network and LightGBM. 2022 International Conference on Machine Vision and Image Processing (MVIP), 1–7. doi:10.1109/MVIP53647.2022.9738760.
  • Fallahpour, M., A. Fatehi, B. N. Araabi, and M. Azizi. 2007. A supervisory fuzzy control of back-end temperature of rotary cement kilns. 2007 International Conference on Control, Automation and Systems, 429–34.
  • Fan, J., X. Wang, L. Wu, H. Zhou, F. Zhang, X. Yu, X. Lu, and Y. Xiang. 2018. Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management 164:102–11. doi:10.1016/j.enconman.2018.02.087.
  • Fatahi, R., H. Nasiri, E. Dadfar, and S. C. Chelgani. 2022. Modeling of energy consumption factors for an industrial cement vertical roller mill by SHAP-XGBoost: A ‘conscious lab’ approach. Scientific Reports 12 (1):7543. doi:10.1038/s41598-022-11429-9.
  • Feng, D.-C., W.-J. Wang, S. Mangalathu, and E. Taciroglu. 2021. Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls. Journal of Structural Engineering 147 (11): 4021173. doi:10.1061/(ASCE)ST.1943-541X.0003115.
  • Gaurav, G. K., and S. Khanam. 2016. Analysis of temperature profile and % metallization in rotary kiln of sponge iron process through CFD. Journal of the Taiwan Institute of Chemical Engineers 63:473–81. doi:10.1016/j.jtice.2016.02.035.
  • Gómez-Ríos, A., J. Luengo, and F. Herrera. 2017. A study on the noise label influence in boosting algorithms: AdaBoost, GBM and XGBoost. International Conference on Hybrid Artificial Intelligence Systems, 268–80.
  • Gong, H., Y. Sun, X. Shu, and B. Huang. 2018. Use of random forests regression for predicting IRI of asphalt pavements. Construction and Building Materials 189:890–7. doi:10.1016/j.conbuildmat.2018.09.017.
  • Hasani, S, and H. Nasiri. 2022. COV-ADSX: An automated detection system using X-ray images, deep learning, and XGBoost for COVID-19. Software Impacts 11:100210. doi:10.1016/j.simpa.2021.100210.
  • Hou, S., Y. Liu, and Q. Yang. 2022. Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning. Journal of Rock Mechanics and Geotechnical Engineering 14 (1):123–43. doi:10.1016/j.jrmge.2021.05.004.
  • Huang, J.-C., Y.-C. Tsai, P.-Y. Wu, Y.-H. Lien, C.-Y. Chien, C.-F. Kuo, J.-F. Hung, S.-C. Chen, and C.-H. Kuo. 2020. Predictive modeling of blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Computer Methods and Programs in Biomedicine 195:105536.
  • Jorjani, E., S. Mesroghli, and S. C. Chelgani. 2008. Prediction of operational parameters effect on coal flotation using artificial neural network. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 15 (5):528–33. doi:10.1016/S1005-8850(08)60099-7.
  • Lawal, A. I., and S. Kwon. 2021. Application of artificial intelligence to rock mechanics: An overview. Journal of Rock Mechanics and Geotechnical Engineering 13 (1):248–66. doi:10.1016/j.jrmge.2020.05.010.
  • Lee, Y., D. Han, M.-H. Ahn, J. Im, and S. J. Lee. 2019. Retrieval of total precipitable water from Himawari-8 AHI data: A comparison of random forest, extreme gradient boosting, and deep neural network. Remote Sensing 11 (15):1741. doi:10.3390/rs11151741.
  • Leng, J., D. Wang, X. Ma, P. Yu, L. Wei, and W. Chen. 2022. Bi-level artificial intelligence model for risk classification of acute respiratory diseases based on Chinese clinical data. Applied Intelligence 52:13114–13131.
  • Li, S., H. Fang, and X. Liu. 2018. Parameter optimization of support vector regression based on sine cosine algorithm. Expert Systems with Applications 91:63–77. doi:10.1016/j.eswa.2017.08.038.
  • Lundberg, S. M., and S.-I. Lee. 2017. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 30:4765–74.
  • Ma, J., Y. Ding, J. C. P. Cheng, Y. Tan, V. J. L. Gan, and J. Zhang. 2019. Analyzing the leading causes of traffic fatalities using XGBoost and grid-based analysis: A city management perspective. IEEE Access 7:148059–72. IEEEdoi:10.1109/ACCESS.2019.2946401.
  • Makaremi, I., A. Fatehi, B. N. Araabi, M. Azizi, and A. Cheloeian. 2009. Abnormal condition detection in a cement rotary kiln with system identification methods. Journal of Process Control 19 (9):1538–45. doi:10.1016/j.jprocont.2009.07.013.
  • Mangalathu, S., H. Shin, E. Choi, and J.-S. Jeon. 2021. Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement. Journal of Building Engineering 39:102300. doi:10.1016/j.jobe.2021.102300.
  • Matin, S. S., J. C. Hower, L. Farahzadi, and S. C. Chelgani. 2016. Explaining relationships among various coal analyses with coal grindability index by random forest. International Journal of Mineral Processing 155:140–6. doi:10.1016/j.minpro.2016.08.015.
  • Nasiri, H, and S. A. Alavi. 2022. A novel framework based on deep learning and ANOVA feature selection method for diagnosis of COVID-19 cases from chest X-ray images. Computational Intelligence and Neuroscience 2022:4694567. doi:10.1155/2022/4694567.
  • Nasiri, H, and S. Hasani. 2022. Automated detection of COVID-19 cases from chest x-ray images using deep neural network and XGBoost. Radiography 28 (3):732–8. doi:10.1016/j.radi.2022.03.011.
  • Nasiri, H., A. Homafar, and S. C. Chelgani. 2021. Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using an explainable artificial intelligence. Results in Geophysical Sciences 8:100034. doi:10.1016/j.ringps.2021.100034.
  • Ogunleye, A, and Q. G. Wang. 2020. XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 17 (6):2131–40. doi:10.1109/TCBB.2019.2911071.
  • Ouallouche, F., M. Lazri, and S. Ameur. 2018. Improvement of rainfall estimation from MSG data using random forests classification and regression. Atmospheric Research 211:62–72. doi:10.1016/j.atmosres.2018.05.001.
  • Panahi, M., N. Sadhasivam, H. R. Pourghasemi, F. Rezaie, and S. Lee. 2020. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology 588:125033. doi:10.1016/j.jhydrol.2020.125033.
  • Parveen, N., S. Zaidi, and M. Danish. 2016. Support vector regression model for predicting the sorption capacity of lead (II). Perspectives in Science 8:629–31. doi:10.1016/j.pisc.2016.06.040.
  • Premalatha, M, and C. Vijaya Lakshmi. 2013. SVM trade-off between maximize the margin and minimize the variables used for regression. International Journal of Pure and Applied Mathematics 87 (6):741–50.
  • Radwan, A. M. 2012. Different possible ways for saving energy in the cement production. Advances in Applied Science Research 3 (2):1162–74.
  • Sharabiany, M. G., A. Fatehi, and B. N. Araabi. 2011. An adaptive neuro fuzzy controller for cement kiln. 2011 2nd International Conference on Instrumentation Control and Automation, 65–70.
  • Söğüt, M. Z. 2012. A research on exergy consumption and potential of total CO2 emission in the Turkish cement sector. Energy Conversion and Management 56:37–45.
  • Stadler, K. S., J. Poland, and E. Gallestey. 2011. Model predictive control of a rotary cement kiln. Control Engineering Practice 19 (1):1–9. doi:10.1016/j.conengprac.2010.08.004.
  • Sui, X., Y. Zhang, S. Shao, and S. Zhang. 2014. Exergetic life cycle assessment of cement production process with waste heat power generation. Energy Conversion and Management 88:684–92. doi:10.1016/j.enconman.2014.08.035.
  • Sun, Y., G. Li, N. Zhang, Q. Chang, J. Xu, and J. Zhang. 2021. Development of ensemble learning models to evaluate the strength of coal-grout materials. International Journal of Mining Science and Technology 31 (2):153–62. doi:10.1016/j.ijmst.2020.09.002.
  • Tohry, A., S. Yazdani, E. Hadavandi, E. Mahmudzadeh, and S. C. Chelgani. 2021. Advanced modeling of HPGR power consumption based on operational parameters by BNN: A ‘conscious-lab’ development. Powder Technology 381:280–4. doi:10.1016/j.powtec.2020.12.018.
  • Ungari, S, and E. Benhamou. 2021. Deep reinforcement learning for portfolio allocation. Risk Magazine Global Quant Network.
  • Wager, S, and S. Athey. 2018. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association 113 (523):1228–42. doi:10.1080/01621459.2017.1319839.
  • Wang, L.-X. 1994. Adaptive fuzzy systems and control: Design and stability analysis. Upper Saddle River, NJ: Prentice-Hall, Inc.
  • Wang, S., F. Dong, and D. Yuan. 2007. The design and implementation of a cement kiln expert system. 2007 IEEE International Conference on Automation and Logistics, 2716–9.
  • Wang, Y., X. Zhao, and B. Wang. 2013. LS-SVM and Monte Carlo methods based reliability analysis for settlement of soft clayey foundation. Journal of Rock Mechanics and Geotechnical Engineering 5 (4):312–7. doi:10.1016/j.jrmge.2012.06.003.
  • Wolff, B. 2017. Support Vector Regression for Solar Power Prediction. Oldenburg: Universität Oldenburg.
  • Zhang, Z, and W.-C. Hong. 2019. Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm. Nonlinear Dynamics 98 (2):1107–36. Springer doi:10.1007/s11071-019-05252-7.
  • Zhang, Z., Y. Huang, R. Qin, W. Ren, and G. Wen. 2021. XGBoost-based on-line prediction of seam tensile strength for Al-Li alloy in laser welding: Experiment study and modelling. Journal of Manufacturing Processes 64:30–44. doi:10.1016/j.jmapro.2020.12.004.
  • Zhang, W., C. Wu, H. Zhong, Y. Li, and L. Wang. 2021. Prediction of Undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers 12 (1):469–77. doi:10.1016/j.gsf.2020.03.007.
  • Zhang, X., C. Yan, C. Gao, B. A. Malin, and Y. Chen. 2020. Predicting missing values in medical data via XGBoost regression. Journal of Healthcare Informatics Research 4 (4):383–94. doi:10.1007/s41666-020-00077-1.
  • Zhou, J., Y. Qiu, S. Zhu, D. Jahed Armaghani, M. Khandelwal, and E. Tonnizam Mohamad. 2021. Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Underground Space. 6 (5):506–15. doi:10.1016/j.undsp.2020.05.008.
  • Zhou, J., E. Li, H. Wei, C. Li, Q. Qiao, and D. J. Armaghani. 2019. Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Applied Sciences 9 (8):1621. doi:10.3390/app9081621.
  • Zhou, K., S. Li, X. Zhou, Y. Hu, C. Zhang, and J. Liu. 2021. Data-driven prediction and analysis method for nanoparticle transport behavior in porous media. Measurement 172:108869. doi:10.1016/j.measurement.2020.108869.
  • Zojaji, Z., M. M. Ebadzadeh, and H. Nasiri. 2022. Semantic schema based genetic programming for symbolic regression. Applied Soft Computing 122:108825. doi:10.1016/j.asoc.2022.108825.