203
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Phytofabrication of silver and zinc oxide nanoparticles using the fruit extract of Phyllanthus emblica and its potential anti-diabetic and anti-cancer activity

&

References

  • Abbasi, B. A., J. Iqbal, R. Ahmad, L. Zia, S. Kanwal, T. Mahmood, C. Wang, and J. T. Chen. 2019. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules 10 (1):38. doi:10.3390/biom10010038.
  • Abel, S., J. L. Tesfaye, N. Nagaprasad, R. Shanmugam, L. P. Dwarampudi, and R. Krishnaraj. 2021. Synthesis and characterization of zinc oxide nanoparticles using moringa leaf extract. Journal of Nanomaterials 2021:1–6. doi:10.1155/2021/4525770.
  • Agarwal, H., A. Nakara, S. Menon, and V. Shanmugam. 2019. Eco-friendly synthesis of zinc oxide nanoparticles using Cinnamomum tamala leaf extract and its promising effect towards the antibacterial activity. Journal of Drug Delivery Science and Technology 53:101212. doi:10.1016/j.jddst.2019.101212.
  • Ahmad, B., N. Hafeez, A. Rauf, S. Bashir, H. Linfang, M.-u. Rehman, M. S. Mubarak, M. S. Uddin, S. Bawazeer, M. A. Shariati, et al. 2021. Phyllanthus emblica: A comprehensive review of its therapeutic benefits. South African Journal of Botany 138:278–310. doi:10.1016/j.sajb.2020.12.028.
  • Akhtar, M. S., J. Panwar, and Y. S. Yun. 2013. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering 1 (6):591–602. doi:10.1021/sc300118u.
  • Alyamani, A. A., S. Albukhaty, S. Aloufi, F. A. AlMalki, H. Al-Karagoly, and G. M. Sulaiman. 2021. Green fabrication of zinc oxide nanoparticles using Phlomis leaf extract: Characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules 26 (20):6140. doi:10.3390/molecules26206140.
  • Anandan, M., G. Poorani, P. Boomi, K. Varunkumar, K. Anand, A. A. Chuturgoon, M. Saravanan, and H. G. Prabu. 2019. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochemistry 80:80–8. doi:10.1016/j.procbio.2019.02.014.
  • Basnet, P., T. I. Chanu, D. Samanta, and S. Chatterjee. 2018. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology. B, Biology 183:201–21. doi:10.1016/j.jphotobiol.2018.04.036.
  • Bayrami, A., E. Ghorbani, S. R. Pouran, A. Habibi-Yangjeh, A. Khataee, and M. Bayrami. 2019. Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrasonics Sonochemistry 58:104613. doi:10.1016/j.ultsonch.2019.104613.
  • Bhat, M., B. Chakraborty, R. S. Kumar, A. I. Almansour, N. Arumugam, D. Kotresha, S. S. Pallavi, S. B. Dhanyakumara, K. N. Shashiraj, and S. Nayaka. 2021. Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. Journal of King Saud University-Science 33 (2):101296. doi:10.1016/j.jksus.2020.101296.
  • Chan, P., G. N. Thomas, and B. Tomlinson. 2002. Protective effects of trilinolein extrated from Panax notoginseng against cardiovascular disease. Acta Pharmacologica Sinica 23:1157–62.
  • Chauhan, R., A. Reddy, and J. Abraham. 2015. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Applied Nanoscience 5 (1):63–71. doi:10.1007/s13204-014-0292-7.
  • Cirillo, V. P. 1962. Mechanism of glucose transport across the yeast cell membrane. Journal of Bacteriology 84:485–91. doi:10.1128/jb.84.3.485-491.1962.
  • Daei, S., N. Ziamajidi, R. Abbasalipourkabir, K. Khanaki, and F. Bahreini. 2022. Anticancer effects of gold nanoparticles by inducing apoptosis in bladder cancer 5637 cells. Biological Trace Element Research 200 (6):2673–83. doi:10.1007/s12011-021-02895-9.
  • Daphedar, A., S. Kakkalameli, G. Melappa, T. Taranath, C. Srinivasa, C. Shivamallu, A. Syed, N. Marraiki, A. Elgorban, R. Veerapur, et al. 2021. Genotoxic assay of silver and zinc oxide nanoparticles synthesized by leaf extract of Garcinia livingstonei T. Anderson: A comparative study. Pharmacognosy Magazine 17 (5):114. doi:10.4103/pm.pm_536_20.
  • Deng, W., H. Wang, B. Wu, and X. Zhang. 2019. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharmaceutica Sinica. B 9 (1):74–86. doi:10.1016/j.apsb.2018.09.009.
  • Dulta, K., G. Koşarsoy Ağçeli, P. Chauhan, R. Jasrotia, and P. K. Chauhan. 2021. A novel approach of synthesis zinc oxide nanoparticles by Bergenia ciliata rhizome extract: Antibacterial and anticancer potential. Journal of Inorganic and Organometallic Polymers and Materials 31 (1):180–90. doi:10.1007/s10904-020-01684-6.
  • Gantait, S., M. Mahanta, S. Bera, and S. K. Verma. 2021. Advances in biotechnology of Emblica officinalis Gaertn. syn. Phyllanthus emblica L.: A nutraceuticals-rich fruit tree with multifaceted ethnomedicinal uses. 3 Biotech 11 (2):1–25. doi:10.1007/s13205-020-02615-5.
  • Gurgur, E., S. S. Oluyamo, A. O. Adetuyi, O. I. Omotunde, and A. E. Okoronkwo. 2020. Green synthesis of zinc oxide nanoparticles and zinc oxide–silver, zinc oxide–copper nanocomposites using Bridelia ferruginea as biotemplate. SN Applied Sciences 2 (5):1–2. doi:10.1007/s42452-020-2269-3.
  • Hawar, S. N., H. S. Al-Shmgani, Z. A. Al-Kubaisi, G. M. Sulaiman, Y. H. Dewir, and J. J. Rikisahedew. 2022. Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanomaterials 2022:1–8. doi:10.1155/2022/1058119.
  • Huong, V. T. L., and N. T. Nguyen. 2021. Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract. Materials Today: Proceedings 42:88–93.
  • Jadhav, K., S. Deore, D. Dhamecha, R. H R, S. Jagwani, S. Jalalpure, and R. Bohara. 2018. Phytosynthesis of silver nanoparticles: Characterization, biocompatibility studies, and anticancer activity. ACS Biomaterials Science & Engineering 4 (3):892–9. doi:10.1021/acsbiomaterials.7b00707.
  • Jafarirad, S., M. Mehrabi, B. Divband, and M. Kosari-Nasab. 2016. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Materials Science & Engineering. C, Materials for Biological Applications 59:296–302. doi:10.1016/j.msec.2015.09.089.
  • Johnson, P., V. Krishnan, C. Loganathan, K. Govindhan, V. Raji, P. Sakayanathan, S. Vijayan, P. Sathishkumar, and T. Palvannan. 2018. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: An effective antioxidant scavenger and α-amylase inhibitor. Artificial Cells, Nanomedicine, and Biotechnology 46 (7):1488–94. doi:10.1080/21691401.2017.1374283.
  • Karmous, I., A. Pandey, K. B. Haj, and A. Chaoui. 2020. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biological Trace Element Research 196 (1):330–42. doi:10.1007/s12011-019-01895-0.
  • Kathiravan, V., S. Ravi, and S. Ashokkumar. 2014. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 130:116–21. doi:10.1016/j.saa.2014.03.107.
  • Khatami, M., H. Q. Alijani, M. S. Nejad, and R. S. Varma. 2018. Core@ shell nanoparticles: Greener synthesis using natural plant products. Applied Sciences 8 (3):411. doi:10.3390/app8030411.
  • Kumar, D., S. Arora, and M. Danish Abdullah. 2019. Plant based synthesis of silver nanoparticles from Ougeinia oojeinensis leaves extract and their membrane stabilizing, antioxidant and antimicrobial activities. Materials Today: Proceedings 17:313–20. doi:10.1016/j.matpr.2019.06.435.
  • Lava, M. B., U. M. Muddapur, N. Basavegowda, S. S. More, and V. S. More. 2021. Characterization, anticancer, antibacterial, anti-diabetic and anti-inflammatory activities of green synthesized silver nanoparticles using Justica wynaadensis leaves extract. Materials Today: Proceedings 46:5942–7. doi:10.1016/j.matpr.2020.10.048.
  • Li, W., X. Zhang, R. Chen, Y. Li, J. Miao, G. Liu, Y. Lan, Y. Chen, and Y. Cao. 2020. HPLC fingerprint analysis of Phyllanthus emblica ethanol extract and their antioxidant and anti-inflammatory properties. Journal of Ethnopharmacology 254:112740. doi:10.1016/j.jep.2020.112740.
  • Lin, Q., C. Qiu, X. Li, S. Sang, D. J. McClements, L. Chen, J. Long, A. Jiao, Y. Tian, and Z. Jin. 2022. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2022.2098687.
  • Liu, X., C. Cui, M. Zhao, J. Wang, W. Luo, B. Yang, and Y. Jiang. 2008. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chemistry 109 (4):909–15. doi:10.1016/j.foodchem.2008.01.071.
  • Mahata, S., A. Pandey, S. Shukla, A. Tyagi, S. A. Husain, B. C. Das, and A. C. Bharti. 2013. Anticancer activity of Phyllanthus emblica Linn. (Indian gooseberry): Inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells. Nutrition and Cancer 65 (sup1):88–97. doi:10.1080/01635581.2013.785008.
  • Majeed, S., M. Danish, M. H. Ismail, M. T. Ansari, and M. N. Ibrahim. 2019. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line-in vitro study. Sustainable Chemistry and Pharmacy 14:100179. doi:10.1016/j.scp.2019.100179.
  • Mechchate, H., I. Es-Safi, A. Louba, A. S. Alqahtani, F. A. Nasr, O. M. Noman, M. Farooq, M. Alharbi, A. Alqahtani, A. Bari, et al. 2021. In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Withania frutescens L. foliar extract. Molecules 26 (2):293. doi:10.3390/molecules26020293.
  • Mohamed Asik, R., B. Gowdhami, M. S. Mohamed Jaabir, G. Archunan, and N. Suganthy. 2019. Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Materials Science & Engineering. C, Materials for Biological Applications 103:109840. doi:10.1016/j.msec.2019.109840.
  • Naik, M. Z., S. N. Meena, S. C. Ghadi, M. M. Naik, and A. V. Salker. 2016. Evaluation of silver-doped indium oxide nanoparticles as in vitro α-amylase and α-glucosidase inhibitors. Medicinal Chemistry Research 25 (3):381–9. doi:10.1007/s00044-015-1494-6.
  • Nayak, D., S. Pradhan, S. Ashe, P. R. Rauta, and B. Nayak. 2015. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of Colloid and Interface Science 457:329–38.
  • Olubomehin, O. O., K. A. Abo, and E. O. Ajaiyeoba. 2013. Alpha-amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of Anthocleista djalonensis extracts and fractions. Journal of Ethnopharmacology 146 (3):811–4. doi:10.1016/j.jep.2013.02.007.
  • Oves, M., M. A. Rauf, M. Aslam, H. A. Qari, H. Sonbol, I. Ahmad, G. S. Zaman, and M. Saeed. 2022. Green synthesis of silver nanoparticles by Conocarpus lancifolius plant extract and their antimicrobial and anticancer activities. Saudi Journal of Biological Sciences 29 (1):460–71. doi:10.1016/j.sjbs.2021.09.007.
  • Ozturk Sarikaya, S. B. 2015. Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol. Journal of Enzyme Inhibition and Medicinal Chemistry 30 (5):761–6. doi:10.3109/14756366.2014.965700.
  • Padalia, H., S. Baluja, and S. Chanda. 2017. Effect of pH on size and antibacterial activity of Salvadora oleoides leaf extract-mediated synthesis of zinc oxide nanoparticles. BioNanoScience 7 (1):40–9. doi:10.1007/s12668-016-0387-6.
  • Perumalsamy, R., and L. Krishnadhas. 2022. Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds. Applied Biochemistry and Biotechnology 194 (3):1136–48. doi:10.1007/s12010-022-03825-8.
  • Poltanov, E. A., A. N. Shikov, H. D. Dorman, O. N. Pozharitskaya, V. G. Makarov, V. P. Tikhonov, and R. Hiltunen. 2009. Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn., syn. Phyllanthus emblica L.) supplements. Phytotherapy Research 23 (9):1309–15. doi:10.1002/ptr.2775.
  • Priyadharshini, R. I., G. Prasannaraj, N. Geetha, and P. Venkatachalam. 2014. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Applied Biochemistry and Biotechnology 174 (8):2777–90. doi:10.1007/s12010-014-1225-3.
  • Rajakumar, G., M. Thiruvengadam, G. Mydhili, T. Gomathi, and I. M. Chung. 2018. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess and Biosystems Engineering 41 (1):21–30. doi:10.1007/s00449-017-1840-9.
  • Rajalakshmi, S., S. Vijayakumar, and P. K. Praseetha. 2019. Neuroprotective behaviour of Phyllanthus emblica (L) on human neural cell lineage (PC12) against glutamate-induced cytotoxicity. Gene Reports 17:100545. doi:10.1016/j.genrep.2019.100545.
  • Reddy, N. V., H. Li, T. Hou, M. S. Bethu, Z. Ren, and Z. Zhang. 2021. Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: Characterization and evaluation of antibacterial, antioxidant, and anticancer activities. International Journal of Nanomedicine 16:15–29. doi:10.2147/IJN.S265003.
  • Rehana, D., D. Mahendiran, R. S. Kumar, and A. K. Rahiman. 2017. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering 40 (6):943–57. doi:10.1007/s00449-017-1758-2.
  • Rehman, G., M. Hamayun, A. Iqbal, S. Ul Islam, S. Arshad, K. Zaman, A. Ahmad, A. Shehzad, A. Hussain, and I. Lee. 2018. In vitro antidiabetic effects and antioxidant potential of Cassia nemophila pods. BioMed Research International 2018:1824790. doi:10.1155/2018/1824790.
  • Sana, S. S., D. V. Kumbhakar, A. Pasha, S. C. Pawar, A. N. Grace, R. P. Singh, V. H. Nguyen, Q. V. Le, and W. Peng. 2020. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity. Molecules 25 (21):4896. doi:10.3390/molecules25214896.
  • Saratale, G. D., R. G. Saratale, D. S. Kim, D. Y. Kim, and H. S. Shin. 2020. Exploiting fruit waste grape pomace for silver nanoparticles synthesis, assessing their antioxidant, antidiabetic potential and antibacterial activity against human pathogens: A novel approach. Nanomaterials 10 (8):1457. doi:10.3390/nano10081457.
  • Saratale, R. G., H. S. Shin, G. Kumar, G. Benelli, D. S. Kim, and G. D. Saratale. 2018. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artificial Cells, Nanomedicine, and Biotechnology 46 (1):211–22. doi:10.1080/21691401.2017.1337031.
  • Singh, H., J. Du, and T. H. Yi. 2017. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: Anticancer and antibacterial activities. Artificial Cells, Nanomedicine, and Biotechnology 45 (7):1310–6. doi:10.1080/21691401.2016.1228663.
  • Srinivasan, P., S. Vijayakumar, S. Kothandaraman, and M. Palani. 2018. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. Journal of Pharmaceutical Analysis 8 (2):109–18. doi:10.1016/j.jpha.2017.10.005.
  • Stan, M., A. Popa, D. Toloman, A. Dehelean, I. Lung, and G. Katona. 2015. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Materials Science in Semiconductor Processing 39:23–9. doi:10.1016/j.mssp.2015.04.038.
  • Supraja, N., T. N. Prasad, T. G. Krishna, and E. David. 2016. Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Applied Nanoscience 6 (4):581–90. doi:10.1007/s13204-015-0472-0.
  • Varadharaj, V., A. Ramaswamy, R. Sakthivel, R. Subbaiya, H. Barabadi, M. Chandrasekaran, and M. Saravanan. 2020. Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: An in vitro study. Journal of Cluster Science 31 (6):1257–66. doi:10.1007/s10876-019-01732-3.
  • Vijayakumar, S., M. Divya, B. Vaseeharan, J. Chen, M. Biruntha, L. P. Silva, E. F. Durán-Lara, K. Shreema, S. Ranjan, and N. Dasgupta. 2021. Biological compound capping of silver nanoparticle with the seed extracts of black cumin (Nigella sativa): A potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. Journal of Inorganic and Organometallic Polymers and Materials 31 (2):624–35. doi:10.1007/s10904-020-01713-4.
  • Vinay, S. P., and N. Chandrasekhar. 2021. Structural and biological investigation of green synthesized silver and zinc oxide nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials 31 (2):552–8. doi:10.1007/s10904-020-01727-y.
  • Vinodhini, S., and V. D. Rajeswari. 2019. Exploring the antidiabetic and anti‐obesity properties of Samanea saman through in vitro and in vivo approaches. Journal of Cellular Biochemistry 120 (2):1539–49. doi:10.1002/jcb.27385.
  • Yang, C. J., C. S. Wang, J. Y. Hung, H. W. Huang, Y. C. Chia, P. H. Wang, C. F. Weng, and M. S. Huang. 2009. Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung Cancer 66 (2):162–8. doi:10.1016/j.lungcan.2009.01.016.
  • Yang, F., A. Yaseen, B. Chen, F. Li, L. Wang, W. Hu, and M. Wang. 2020. Chemical constituents from the fruits of Phyllanthus emblica L. Biochemical Systematics and Ecology 92:104122. doi:10.1016/j.bse.2020.104122.
  • Yusefi, M., K. Shameli, R. R. Ali, S. W. Pang, and S. Y. Teow. 2020. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. Journal of Molecular Structure 1204:127539. doi:10.1016/j.molstruc.2019.127539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.