127
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Biogenic synthesis of selenium nanoparticles, characterization and screening of therapeutic applications using Averrhoa carambola leaf extract

ORCID Icon, , , , & ORCID Icon

References

  • Akbar, M. U., M. Ikram, M. Imran, A. Haider, A. Ul-Hamid, S. Dilpazir, I. Shahzadi, G. Nazir, A. Shahzadi, W. Nabgan, et al. 2022. Cu-loaded C3N4-MgO nanorods for promising antibacterial and dye degradation. Applied Nanoscience 12 (8):2443–58. doi:10.1007/s13204-022-02494-7.
  • Amin, M. A., M. A. Ismail, A. A. Badawy, M. A. Awad, M. F. Hamza, M. F. Awad, and A. Fouda. 2021. The potency of fungal-fabricated selenium nanoparticles to improve the growth performance of Helianthus annuus L. and control of cutworm Agrotis ipsilon. Catalysts 11 (12):1551. doi:10.3390/catal11121551.
  • Amiri, H., S. I. Hashemy, Z. Sabouri, H. Javid, and M. Darroudi. 2021. Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis. Research on Chemical Intermediates 47 (6):2539–56. doi:10.1007/s11164-021-04424-8.
  • Baraka, A., S. Dickson, M. Gobara, G. S. El-Sayyad, M. Zorainy, M. I. Awaad, H. Hatem, M. M. Kotb, and A. F. Tawfic. 2017. Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chemical Papers 71 (11):2271–81. doi:10.1007/s11696-017-0221-9.
  • Bartůněk, V., J. Junková, J. Šuman, K. Kolářová, S. Rimpelová, P. Ulbrich, and Z. Sofer. 2015. Preparation of amorphous antimicrobial selenium nanoparticles stabilized by odor suppressing surfactant polysorbate 20. Materials Letters 152:207–9. doi:10.1016/j.matlet.2015.03.092.
  • Beheshti, N., S. Soflaei, M. Shakibaie, M. H. Yazdi, F. Ghaffarifar, A. Dalimi, and A. R. Shahverdi. 2013. Efficacy of biogenic selenium nanoparticles against Leishmania major: In vitro and in vivo studies. Journal of Trace Elements in Medicine and Biology 27 (3):203–7. doi:10.1016/j.jtemb.2012.11.002.
  • Biswas, A. K., M. R. Islam, Z. S. Choudhury, A. Mostafa, and M. F. Kadir. 2014. Nanotechnology based approaches in cancer therapeutics. Advances in Natural Sciences: Nanoscience and Nanotechnology 45 (4):043001.
  • Cavalu, S., E. Kamel, V. Laslo, L. Fritea, T. Costea, I. V. Antoniac, E. Vasile, A. Antoniac, A. Semenescu, A. Mohan, et al. 2018. Eco-friendly, facile and rapid way for synthesis of selenium nanoparticles. Revista de Chimie 68 (12):2963–6. doi:10.37358/RC.17.12.6017.
  • Chandrasekaran, M., and V. Venkatesalu. 2004. Antibacterial and antifungal activity of Syzygium jambolanum seeds. Journal of Ethnopharmacology 91 (1):105–8. doi:10.1016/j.jep.2003.12.012.
  • Chang, H. Y., H. C. Huang, T. C. Huang, P. C. Yang, Y. C. Wang, and H. F. Juan. 2013. Flow cytometric detection of reactive oxygen species. Bio-Protocol 3 (8):e431. doi:10.21769/BioProtoc.431.
  • Chatterjee, S., S. Mahanty, P. Das, P. Chaudhuri, and S. Das. 2020. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr (VI) from aqueous solution. Chemical Engineering Journal 385:123790. doi:10.1016/j.cej.2019.123790.
  • Das, S., U. K. Parida, and B. K. Bindhani. 2013. Green biosynthesis of silver nanoparticles using Moringa oleifera L. leaf. International Journal of Nanotechnology and Application 3 (2):51–62.
  • Dasgupta, P., P. Chakraborty, and N. N. Bala. 2013. Averrhoa carambola: An updated review. International Journal of Pharma Research & Review 2 (7):54–63.
  • Dutta, D., R. Mukherjee, M. Patra, M. Banik, R. Dasgupta, M. Mukherjee, and T. Basu. 2016. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids and Surfaces. B, Biointerfaces 147:45–53. doi:10.1016/j.colsurfb.2016.07.045.
  • Fesharaki, P. J., P. Nazari, M. Shakibaie, S. Rezaie, M. Banoee, M. Abdollahi, and A. R. Shahverdi. 2010. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian Journal of Microbiology 41 (2):461–6. doi:10.1590/S1517-838220100002000028.
  • Haizhen, H., Y. Qiang, and Y. Xiurong. 2004. Preparation and characterization of metal-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces 39 (1–2):31–7.
  • Halliwell, B., J. M. Gutteridge, and O. I. Aruoma. 1987. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry 165 (1):215–9. doi:10.1016/0003-2697(87)90222-3.
  • Hariharan, H., N. Al-Harbi, P. Karuppiah, and S. Rajaram. 2012. Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Letters 9 (12):509–15.
  • Hoet, P. H. M., I. Brüske-Hohlfeld, and O. V. Salata. 2004. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology 2 (1):12–6. doi:10.1186/1477-3155-2-12.
  • Hosseinkhani, P., A. M. Zand, S. Imani, M. Rezayi, and Z. S. Rezaei. 2011. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). International Journal of Nano Dimensions 1:279–85.
  • Huang, Y., L. He, W. Liu, C. Fan, W. Zheng, Y. S. Wong, and T. Chen. 2013. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 34 (29):7106–16. doi:10.1016/j.biomaterials.2013.04.067.
  • Ikram, E. H., K. H. Eng, A. M. Jalil, A. Ismail, S. Idris, A. Azlan, H. S. Nazri, N. A. Diton, and R. A. Mokhtar. 2009. Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. Journal of Food Composition and Analysis 22 (5):388–93. doi:10.1016/j.jfca.2009.04.001.
  • Kapur, M., K. Soni, and K. Kohli. 2017. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Advanced Techniques in Biology & Medicine 05 (01):1764–2379. doi:10.4172/2379-1764.1000198.
  • Khalil, M. M., E. H. Ismail, and F. El-Magdoub. 2012. Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arabian Journal of Chemistry 5 (4):431–7. doi:10.1016/j.arabjc.2010.11.011.
  • Khan, S., A. A. Ansari, A. A. Khan, W. Al-Kattan, O. Al-Obeed, and R. Ahmad. 2016. Design, synthesis and in vitro evaluation of anticancer and antibacterial potential of surface modified Tb(OH)3SiO2 core–shell nanoparticles. RSC Advances 6 (22):18667–77. doi:10.1039/C5RA17906H.
  • Krishnan, G., J. Subramaniyan, P. C. Subramani, and D. Thiruvengadam. 2016. Nanochemopreventive effect of polymer functionalized gold nanoparticles containing hesperetin drug inhibited proliferation and induced apoptosis in Hep3B cells. Journal of Applied Pharmaceutical Science 6 (12):114–23. doi:10.7324/JAPS.2016.601216.
  • Khurana, A., S. Tekula, M. A. Saifi, P. Venkatesh, and C. Godugu. 2019. Therapeutic applications of selenium nanoparticles. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy] 111:802–12. doi:10.1016/j.biopha.2018.12.146.
  • Kirupagaran, R., A. Saritha, and S. Bhuvaneswari. 2016. Green synthesis of selenium nanoparticles from leaf and stem extract of Leucas lavandulifolia Sm. and their application. Journal of Nanoscience and Technology 31:224–6.
  • Kong, H., J. Yang, Y. Zhang, Y. Fang, K. Nishinari, and G. O. Phillips. 2014. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. International Journal of Biological Macromolecules 65:155–62. doi:10.1016/j.ijbiomac.2014.01.011.
  • Kora, A. J., and L. Rastogi. 2016. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management 181:231–6. doi:10.1016/j.jenvman.2016.06.029.
  • Lin, Z. H., and C. C. Wang. 2005. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Materials Chemistry and Physics 92 (2–3):591–4. doi:10.1016/j.matchemphys.2005.02.023.
  • Lu, X., J. Qian, H. Zhou, Q. Gan, W. Tang, J. Lu, Y. Yuan, and C. Liu. 2011. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. International Journal of Nanomedicine 6:1889–901. doi:10.2147/IJN.S24005.
  • Maddox, C. E., L. M. Laur, and L. Tian. 2010. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Current Microbiology 60 (1):53–8. doi:10.1007/s00284-009-9501-0.
  • Maiyo, F., and M. Singh. 2017. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine 12 (9):1075–89. doi:10.2217/nnm-2017-0024.
  • Majhi, B., K. B. Satapathy, and S. K. Mishra. 2019. Antimicrobial activity of Averrhoa carambola L. leaf extract and its phytochemical analysis. Research Journal of Pharmacy and Technology 12 (3):1219–24. doi:10.5958/0974-360X.2019.00202.6.
  • Manda, H., K. Vyas, A. Pandya, and G. Singhal. 2012. A complete review on: Averrhoa carambola. World Journal of Pharmacy and Pharmaceutical Sciences 1 (1):17–33.
  • Mittal, A. K., Y. Chisti, and U. C. Banerjee. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances 31 (2):346–56. doi:10.1016/j.biotechadv.2013.01.003.
  • Mittal, A. K., K. Thanki, S. Jain, and U. C. Banerjee. 2016. Comparative studies of anticancer and antimicrobial potential of bioinspired silver and silver-selenium nanoparticles. Applied Nanomedicine 3 (1):1–6.
  • Moghimi, S. M., A. C. Hunter, and J. C. Murray. 2005. Nanomedicine: Current status and future prospects. FASEB Journal 19 (3):311–30. doi:10.1096/fj.04-2747rev.
  • Mohammad, G. R., M. H. Tabrizi, T. Ardalan, S. Yadamani, and E. Safavi. 2019. Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. Journal of Biosciences 44 (2):1–9.
  • Nancharaiah, Y. V., and P. N. Lens. 2015. Selenium biomineralization for biotechnological applications. Trends in Biotechnology 33 (6):323–30. doi:10.1016/j.tibtech.2015.03.004.
  • Nguyen, T. H., B. Vardhanabhuti, M. Lin, and A. Mustapha. 2017. Antibacterial properties of selenium nanoparticles and their toxicity to Caco-2 cells. Food Control. 77:17–24. doi:10.1016/j.foodcont.2017.01.018.
  • Novotny, L., P. Rauko, S. B. Kombian, and I. O. Edafiogho. 2010. Selenium as a chemoprotective anti-cancer agent: Reality or wishful thinking. Neoplasma 57 (5):383–91. doi:10.4149/neo_2010_05_383.
  • Prasad, K. S., and K. Selvaraj. 2014. Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biological Trace Element Research 157 (3):275–83. doi:10.1007/s12011-014-9891-0.
  • Prasad, R., A. K. Jha, and K. Prasad. 2018. Exploring the realms of nature for nanosynthesis. Cham: Springer International Publishing.
  • Puupponen‐Pimiä, R., L. Nohynek, C. Meier, M. Kähkönen, M. Heinonen, A. Hopia, and K. M. Oksman‐Caldentey. 2001. Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology 90 (4):494–507. doi:10.1046/j.1365-2672.2001.01271.x.
  • Ramamurthy, C. H., K. S. Sampath, P. Arunkumar, M. S. Kumar, V. Sujatha, K. Premkumar, and C. Thirunavukkarasu. 2013. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering 36 (8):1131–9. doi:10.1007/s00449-012-0867-1.
  • Shah, C. P., C. Dwivedi, K. K. Singh, M. Kumar, and P. N. Bajaj. 2010. Riley oxidation: A forgotten name reaction for synthesis of selenium nanoparticles. Materials Research Bulletin 45 (9):1213–7. doi:10.1016/j.materresbull.2010.05.013.
  • Shen, Y., X. Wang, A. Xie, L. Huang, J. Zhu, and L. Chen. 2008. Synthesis of dextran/Se nanocomposites for nanomedicine application. Materials Chemistry and Physics 109 (2–3):534–40. doi:10.1016/j.matchemphys.2008.01.016.
  • Shi, J., A. R. Votruba, O. C. Farokhzad, and R. Langer. 2010. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters 10 (9):3223–30. doi:10.1021/nl102184c.
  • Soflaei, S., A. Dalimi, A. Abdoli, M. Kamali, V. Nasiri, M. Shakibaie, and M. Tat. 2014. Anti- leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comparative Clinical Pathology 23 (1):15–20. doi:10.1007/s00580-012-1561-z.
  • Sperling, R. A., and W. J. Parak. 2010. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences 368 (1915):1333–83. doi:10.1098/rsta.2009.0273.
  • Tong, G. X., F. F. Du, Y. Liang, Q. Hu, R. N. Wu, J. G. Guan, and X. Hu. 2013. Polymorphous ZnO complex architectures: Selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. Journal of Materials Chemistry-B 1 (4):454–63. doi:10.1039/c2tb00132b.
  • Uhl, L., A. Gerstel, M. Chabalier, and S. Dukan. 2015. Hydrogen peroxide induced cell death: One or two modes of action? Heliyon 1 (4):e00049. doi:10.1016/j.heliyon.2015.e00049.
  • Xiong, Y., and Y. Xia. 2007. Shape‐controlled synthesis of metal nanostructures: The case of palladium. Advanced Materials 19 (20):3385–91. doi:10.1002/adma.200701301.
  • Xu, C., L. Qiao, Y. Guo, L. Ma, and Y. Cheng. 2018. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydrate Polymers 195:576–85. doi:10.1016/j.carbpol.2018.04.110.
  • Yan, J. K., W. Y. Qiu, Y. Y. Wang, W. H. Wang, Y. Yang, and H. N. Zhang. 2018. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydrate Polymers 179:19–27. doi:10.1016/j.carbpol.2017.09.063.
  • Zhai, X., C. Zhang, G. Zhao, S. Stoll, F. Ren, and X. Leng. 2017. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. Journal of Nanobiotechnology 15 (1):4–12. doi:10.1186/s12951-016-0243-4.
  • Zonaro, E., S. Lampis, R. J. Turner, S. J. Qazi, and G. Vallini. 2015. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in Microbiology 6 (6):584. doi:10.3389/fmicb.2015.00584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.