246
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

On the prediction of particle collision behavior in coarse-grained and resolved systems

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aguilar-Corona, A., R. Zenit, and O. Masbernat. 2011. Collisions in a liquid fluidized bed. International Journal of Multiphase Flow 37 (7):695–705.
  • Alizadeh, E., F. Bertrand, and J. Chaouki. 2014. Comparison of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE Journal 60 (1):60–75.
  • Andrews, M. J., and P. J. O’Rourke. 1996. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. International Journal of Multiphase Flow 22 (2):379–402.
  • Baba, T., H. Nakamura, H. Takimoto, S. Ohsaki, S. Watano, K. Takehara, T. Higuchi, T. Hirosawa, and T. Yamamoto. 2021. DEM–PBM coupling method for the layering granulation of iron ore. Powder Technology 378:40–50.
  • Barrasso, D., A. Tamrakar, and R. Ramachandran. 2014. A reduced order PBM–ANN model of a multi-scale PBM–DEM description of a wet granulation process. Chemical Engineering Science 119:319–29.
  • Barrasso, D., and R. Ramachandran. 2015. Multi-scale modeling of granulation processes: Bi-directional coupling of PBM with DEM via collision frequencies. Chemical Engineering Research and Design 93:304–17.
  • Barrasso, D., T. Eppinger, F. E. Pereira, R. Aglave, K. Debus, S. K. Bermingham, and R. Ramachandran. 2015. A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional PBM–DEM coupling algorithm. Chemical Engineering Science 123:500–13.
  • Bhoi, S., A. Das, J. Kumar, and D. Sarkar. 2019. Sonofragmentation of two-dimensional plate-like crystals: Experiments and Monte Carlo simulations. Chemical Engineering Science 203:12–27.
  • Bierwisch, C., T. Kraft, H. Riedel, and M. Moseler. 2009. Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. Journal of the Mechanics and Physics of Solids 57 (1):10–31.
  • Börner, M., A. Bück, and E. Tsotsas. 2017. DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation. Chemical Engineering Science 161:187–97.
  • Brandao, R. J., R. M. Lima, R. L. Santos, C. R. Duarte, and M. A. Barrozo. 2020. Experimental study and DEM analysis of granular segregation in a rotating drum. Powder Technology 364:1–12.
  • Buchholtz, V., T. Pöschel, and H.-J. Tillemans. 1995. Simulation of rotating drum experiments using non-circular particles. Physica A: Statistical Mechanics and Its Applications 216 (3):199–212.
  • Buffière, P., and R. Moletta. 2000. Collision frequency and collisional particle pressure in three-phase fluidized beds. Chemical Engineering Science 55 (22):5555–63.
  • Chan, E. L., and K. Washino. 2018. Coarse grain model for DEM simulation of dense and dynamic particle flow with liquid bridge forces. Chemical Engineering Research and Design 132:1060–9.
  • Cundall, P. A., and O. D. Strack. 1979. A discrete numerical model for granular assemblies. Geotechnique 29 (1):47–65.
  • Das, A., A. Bück, and J. Kumar. 2020. Selection function in breakage processes: PBM and Monte Carlo modeling. Advanced Powder Technology 31 (4):1457–69.
  • Das, A., and J. Kumar. 2021. Population balance modeling of volume and time dependent spray fluidized bed aggregation kernel using Monte Carlo simulation results. Applied Mathematical Modelling 92:748–69.
  • Das, A., J. Kumar, M. Dosta, and S. Heinrich. 2020. On the approximate solution and modeling of the kernel of nonlinear breakage population balance equation. SIAM Journal on Scientific Computing 42 (6):B1570–B1598.
  • De, T., J. Chakraborty, J. Kumar, A. Tripathi, M. Sen, and W. Ketterhagen. 2022. A particle location based multi-level coarse-graining technique for discrete element method (DEM) simulation. Powder Technology 398:117058.
  • Dosta, M., and V. Skorych. 2020. MUSEN: An open-source framework for GPU-accelerated DEM simulations. SoftwareX 12:100618.
  • Gidaspow, D. 1994. Multiphase flow and fluidization: Continuum and kinetic theory descriptions. Academic Press.
  • Govender, N., R. K. Rajamani, S. Kok, and D. N. Wilke. 2015. Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework. Minerals Engineering 79:152–68.
  • Hilton, J. E., and P. W. Cleary. 2014. Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds. Applied Mathematical Modelling 38 (17–18):4197–214.
  • Jiang, Z., T. Hagemeier, A. Bueck, and E. Tsotsas. 2017. Experimental measurements of particle collision dynamics in a pseudo-2d gas-solid fluidized bed. Chemical Engineering Science 167:297–316.
  • Kačianauskas, R., A. Maknickas, A. Kačeniauskas, D. Markauskas, and R. Balevičius. 2010. Parallel discrete element simulation of poly-dispersed granular material. Advances in Engineering Software 41 (1):52–63.
  • Kloss, C. 2010. LIGGGHTS(R)-PUBLIC DEM simulation engin, https://www.cfdem.com/media/DEM/docu/Manual.html (accessed May 1, 2010).
  • Kloss, C. 2016. LIGGGHTS-PUBLIC documentation. https://www.cfdem.com/media/DEM/docu/gran-model-hooke-stiffness.html (accessed February 2, 2019).
  • Kruggel-Emden, H., M. Sturm, S. Wirtz, and V. Scherer. 2008. Selection of an appropriate time integration scheme for the discrete element method (DEM). Computers & Chemical Engineering 32 (10):2263–79.
  • Li, H., Y. Li, Z. Tang, L. Xu, and Z. Zhao. 2011. Numerical simulation and analysis of vibration screening based on EDEM. Transactions of the Chinese Society of Agricultural Engineering 27 (5):117–21.
  • Li, Y., Y. Xu, and C. Thornton. 2005. A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technology 160 (3):219–28.
  • Lin, J., K. Luo, S. Wang, C. Hu, and J. Fan. 2020. An augmented coarse-grained CFD-DEM approach for simulation of fluidized beds. Advanced Powder Technology 31 (10):4420–7.
  • Lu, L., X. Gao, M. Shahnam, and W. A. Rogers. 2020. Coarse grained computational fluid dynamic simulation of sands and biomass fluidization with a hybrid drag. AIChE Journal 66 (4):e16867.
  • Mishra, B. 2003. A review of computer simulation of tumbling mills by the discrete element method: Part I—Contact mechanics. International Journal of Mineral Processing 71 (1–4):73–93.
  • Nasato, D. S., C. Goniva, S. Pirker, and C. Kloss. 2015. Coarse graining for large-scale DEM simulations of particle flow–An investigation on contact and cohesion models. Procedia Engineering 102:1484–90.
  • Norouzi, H. R., R. Zarghami, R. Sotudeh-Gharebagh, and N. Mostoufi. 2016. Coupled CFD-DEM modeling: Formulation, implementation and application to multiphase flows. John Wiley & Sons.
  • Prigozhin, L., and H. Kalman. 1998. Radial mixing and segregation of a binary mixture in a rotating drum: Model and experiment. Physical Review E 57 (2):2073.
  • Radl, S., C. Radeke, J. G. Khinast, and S. Sundaresan. 2011. Parcel-based approach for the simulation of gas-particle flows. In 8th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim, Vol. 2011.
  • Reinhold, A., and H. Briesen. 2012. Numerical behavior of a multiscale aggregation model—coupling population balances and discrete element models. Chemical Engineering Science 70:165–75.
  • Sakai, M. 2016. How should the discrete element method be applied in industrial systems?: A review. KONA Powder and Particle Journal 33:169–78.
  • Sakai, M., and S. Koshizuka. 2009. Large-scale discrete element modeling in pneumatic conveying. Chemical Engineering Science 64 (3):533–9.
  • Sakai, M., Y. Yamada, Y. Shigeto, K. Shibata, V. M. Kawasaki, and S. Koshizuka. 2010. Large-scale discrete element modeling in a fluidized bed. International Journal for Numerical Methods in Fluids 64 (10–12):1319–35.
  • Schneider, D., R. Kaitna, W. Dietrich, L. Hsu, C. Huggel, and B. McArdell. 2011. Frictional behavior of granular gravel–ice mixtures in vertically rotating drum experiments and implications for rock–ice avalanches. Cold Regions Science and Technology 69 (1):70–90.
  • Senapati, S. K., and S. K. Dash. 2021. Gas–solid flow in a diffuser: Effect of inter-particle and particle–wall collisions. Particuology 57:187–200.
  • Tan, H., M. Goldschmidt, R. Boerefijn, M. Hounslow, A. Salman, and J. Kuipers. 2004. Building population balance model for fluidized bed melt granulation: Lessons from kinetic theory of granular flow. Powder Technology 142 (2–3):103–9.
  • Tian, T., J. Su, J. Zhan, S. Geng, G. Xu, and X. Liu. 2018. Discrete and continuum modeling of granular flow in silo discharge. Particuology 36:127–38.
  • Tiscar, J., A. Escrig, G. Mallol, J. Boix, and F. Gilabert. 2021. DEM-based modelling framework for spray-dried powders in ceramic tiles industry. Part II: Solver implementation. Powder Technology 377:795–812.
  • Wang, S., and Y. Shen. 2022. Coarse-grained CFD-DEM modelling of dense gas-solid reacting flow. International Journal of Heat and Mass Transfer 184:122302.
  • Yamamoto, M., S. Ishihara, and J. Kano. 2016. Evaluation of particle density effect for mixing behavior in a rotating drum mixer by DEM simulation. Advanced Powder Technology 27 (3):864–70.
  • Zhang, L., Z. Jiang, F. Weigler, F. Herz, J. Mellmann, and E. Tsotsas. 2020. PTV measurement and DEM simulation of the particle motion in a flighted rotating drum. Powder Technology 363:23–37.
  • Zhang, L., Z. Jiang, J. Mellmann, F. Weigler, F. Herz, A. Bück, and E. Tsotsas. 2021. Influence of the number of flights on the dilute phase ratio in flighted rotating drums by PTV measurements and DEM simulations. Particuology 56:171–82.
  • Zhu, H., Z. Zhou, R. Yang, and A. Yu. 2008. Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science 63 (23):5728–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.