154
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nano-dimensional gold synthesis for biomedical applications: upscaling and challenges

, , , , , & show all

References

  • Agnihotri, M., S. Joshi, A. R. Kumar, S. Zinjarde, and S. Kulkarni. 2009. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters 63 (15):1231–4. doi:10.1016/j.matlet.2009.02.042.
  • Ajayan, P. M. 2004. Nanotechnology: How does a nanofibre grow? Nature 427 (6973):402–3. doi:10.1038/427402a.
  • Akhtar, M. S., J. Panwar, and Y. S. Yun. 2013. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering 1 (6):591–602. doi:10.1021/sc300118u.
  • Albanese, A., and W. C. W. Chan. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5 (7):5478–89. doi:10.1021/nn2007496.
  • Alkilany, A. M., S. E. Lohse, and C. J. Murphy. 2013. The gold standard: Gold nanoparticle libraries to understand the nano–bio interface. Accounts of Chemical Research 46 (3):650–61. doi:10.1021/ar300015b.
  • Annadhasan, M., T. Muthukumarasamyvel, V. R. Sankar Babu, and N. Rajendiran. 2014. Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustainable Chemistry & Engineering 2 (4):887–96. doi:10.1021/sc400500z.
  • Arvizo, R., R. Bhattacharya, and P. Mukherjee. 2010. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opinion on Drug Delivery 7 (6):753–63. doi:10.1517/17425241003777010.
  • Aydin, E., J. A. Planell, and V. Hasirci. 2011. Hydroxyapatite nanorod-reinforced biodegradable poly (Llactic acid) composites for bone plate applications. Journal of Materials Science. Materials in Medicine 22 (11):2413–27. doi:10.1007/s10856-011-4435-z.
  • Balasooriya, E. R., C. D. Jayasinghe, U. A. Jayawardena, R. W. D. Ruwanthika, R Mendis de Silva, and P. V. Udagama. 2017. Honey mediated green synthesis of nanoparticles: New era of safe nanotechnology. Journal of Nanomaterials 2017:1–10. doi:10.1155/2017/5919836.
  • Bao, C., J. Conde, E. Polo, P. del Pino, M. Moros, P. V. Baptista, V. Grazu, D. Cui, and J. M. de la Fuente. 2014. A promising road with challenges: Where are gold nanoparticles in translational research? Nanomedicine (London, England) 9 (15):2353–70. doi:10.2217/nnm.14.155.
  • Bashir, M. R., L. Bhatti, D. Marin, and R. C. Nelson. 2015. Emerging applications for ferumoxytol as a contrast agent in MRI. Journal of Magnetic Resonance Imaging : JMRI 41 (4):884–98. doi:10.1002/jmri.24691.
  • Becue, A., C. Champod, and P. Margot. 2007. Use of gold nanoparticles as molecular intermediates for the detection of fingermarks. Forensic Science International 168 (2–3):169–76. doi:10.1016/j.forsciint.2006.07.014.
  • Bhattacharya, R., and P. Mukherjee. 2008. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews 60 (11):1289–306. doi:10.1016/j.addr.2008.03.013.
  • Bhattacharyya, A., A. Bhaumik, M. Nandi, S. Viraktamath, R. Kumar, A. Nayak, M. U. Chowdhury, and S. Mandal. 2010. Nano—a new frontier in present century. Advances in Life Sciences 3 (1–4):18–23.
  • Bhau, B. S., S. Ghosh, S. Puri, B. Borah, D. K. Sarmah, and R. Khan. 2015. Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Advanced Materials Letters 6 (1):55–8. doi:10.5185/amlett.2015.5609.
  • Bose, S., and B. Michniak-Kohn. 2013. Preparation and characterization of lipid based nano systems for topical delivery of quercetin. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 48 (3):442–52. doi:10.1016/j.ejps.2012.12.005.
  • Bosecker, K. 1997. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews 20 (3–4):591–604. doi:10.1111/j.1574-6976.1997.tb00340.x.
  • Brannon-Peppas, L., and J. O. Blanchette. 2004. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews 56 (11):1649–59. doi:10.1016/j.addr.2004.02.014.
  • Burda, C., S. Link, M. Mohamed, and M. El-Sayed. 2001. The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: Assignment of the transient features by carrier quenching. The Journal of Physical Chemistry B 105 (49):12286–92. 10.1021/jp0124589.
  • Buzea, C., I. I. Pacheco, and K. Robbie. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2 (4):MR17–MR71. doi:10.1116/1.2815690.
  • Charcosset, C., and H. Fessi. 2005. A new process for drug loaded nano capsules preparation using a membrane contactor. Drug Development and Industrial Pharmacy 31 (10):987–92. doi: 10.1080/03639040500306237.
  • Chen, Y., X. Gu, C. G. Nie, Z. Y. Jiang, Z. X. Xie, and Z. J. Lin. 2005. Shape controlled growth of gold nanoparticles by a solution synthesis. Chemical Communications 33 (33):4181–3. doi:10.1039/b504911c.
  • Chen, Y., and F. Xun. 2022. Gold nanoparticles for skin drug delivery. International Journal of Pharmaceutics 625 (625):122122. doi:10.1016/j.ijpharm.2022.122122.
  • Colombo, A. P., S. Briancon, J. Lieto, and H. Fessi. 2001. Project, design, and use of a pilot plant for nano capsule production. Drug Development and Industrial Pharmacy 27 (10):1063–72. doi:10.1081/DDC-100108369.
  • Corrias, F., and F. Lai. 2011. New methods for lipid nanoparticles preparation. Recent Patents on Drug Delivery & Formulation 5 (3):201–13. doi:10.2174/187221111797200597.
  • Daisy, P., and K. Saipriya. 2012. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International Journal of Nanomedicine 7:1189–202. doi:10.2147/IJN.S26650.
  • Daniel, M. C., and D. Astruc. 2004. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chemical Reviews 104 (1):293–346. doi:10.1021/cr030698+.
  • Das, R. K., N. Gogoi, and U. Bora. 2011. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess and Biosystems Engineering 34 (5):615–9. doi:10.1007/s00449-010-0510-y.
  • Das, S., A. Halder, S. Mandal, M. Mazumder, T. Bera, A. Mukherjee, and P. Roy. 2018. Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis. Artificial Cells, Nanomedicine, and Biotechnology 46 (sup1):751–62. doi:10.1080/21691401.2018.1435549.
  • De Jong, H, and Borm Paul, J. A. 2008. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine 3 (2):133–49. doi:10.2147/ijn.s596.
  • Divya, M. J., C. Sowmia, K. Joona, and K. P. Dhanya. 2013. Synthesis of zinc oxide nanoparticle from Hibiscus rosasinensis leaf extract and investigation of its antimicrobial activity. Research Journal of Pharmaceutical, Biological and Chemical Sciences 4:1137–42.
  • Dong, H., F. Zou, X. Hu, H. Zhu, K. Koh, and H. Chen. 2018. Analyte induced AuNPs aggregation enhanced surface plasmon resonance for sensitive detection of paraquat. Biosensors & Bioelectronics 117:605–12. doi:10.1016/j.bios.2018.06.057.
  • Du, L., H. Jiang, X. Liu, and E. Wang. 2007. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochemistry Communications 9 (5):1165–70. doi:10.1016/j.elecom.2007.01.007.
  • Elahi, N., M. Kamali, and M. H. Baghersad. 2018. Recent biomedical applications of gold nanoparticles: A review. Talanta 184:537–56. doi:10.1016/j.talanta.2018.02.088.
  • El-Harati, A. A., C. Charcosset, and H. Fessi. 2006. Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharmaceutical Development and Technology 11 (2):153–7. doi:10.1080/10837450600561182.
  • El-Sayed, M. A. 2001. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research 34 (4):257–64. doi:10.1021/ar960016n.
  • Engelmann, W., and R. Von Hohendorff. 2019. Regulatory challenges in nanotechnology for sustainable production of biofuel in Brazil. In Sustainable bioenergy, 367–81. Amsterdam, The Netherlands: Elsevier. doi:10.1016/B978-0-12-817654-2.00014-9.
  • Eustis, S., and A. El-Sayed. 2006. Why Gold Nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews 35 (3):209–17. doi:10.1039/B514191E.
  • Fang, G., Y. Yang, J. Yao, Z. Shao, and X. Chen. 2016. Formation of different gold nanostructures by silk nanofibrils. Materials Science & Engineering. C, Materials for Biological Applications 64:376–82. doi:10.1016/j.msec.2016.03.113.
  • Faraday, M. 1857. The Bakerian Lecture: Experimental relations of gold to light. Philosophical Transactions of the Royal Society of London 147:145–81. doi:10.1098/rstl.1857.0011.
  • Fessi, H., F. Puisieux, J. Devissaguet, N. Ammoury, and S. Benita. 1989. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics 55 (1):R1–4. doi:10.1016/0378-5173(89)90281-0.
  • Figueroa, E. R., A. Y. Lin, J. Yan, L. Luo, A. E. Foster, and R. A. Drezek. 2014. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials 35 (5):1725–34. doi:10.1016/j.biomaterials.2013.11.026.
  • Frank, C. 1999. Gold Based Therapeutic agents. Chemical Reviews 99 (9):2589–600. doi:10.1021/cr980431o.
  • Gerber, A., M. Bundschuh, D. Klingelhofer, and D. A. Groneberg. 2013. Gold nanoparticles: Recent aspects for human toxicology. Journal of Occupational Medicine and Toxicology (London, England) 8 (1):32–6. doi:10.1186/1745-6673-8-32.
  • Ghosh, S. K., and T. Pal. 2007. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews 107 (11):4797–862. doi:10.1021/cr0680282.
  • Ghosh, P. S., C. K. Kim, G. Han, N. S. Forbes, and V. M. Rotello. 2008. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2 (11):2213–8. doi:10.1021/nn800507t.
  • Ghosh, S., S. Patil, M. Ahire, R. Kitture, D. Gurav, A. M. Jabgunde, S. Kale, K. Pardesi, V. Shinde, V. Bellare, et al. 2012. Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. Journal of Nanobiotechnology 10:17. doi:10.1186/1477-3155-10-17.
  • Ghule, K., A. V. Ghule, J. Y. Liu, and Y. C. Ling. 2006. Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicer arietinum L.) extract and HAuCl4.3.H2O: A green biogenic approach. Journal of Nanoscience and Nanotechnology 6 (12):3746–51. doi:10.1166/jnn.2006.608.
  • Gole, A., and C. J. Murphy. 2004. Seed mediated synthesis of gold nanorods: Role of the size and nature of seed. Chemistry of Materials 16 (19):3633–40. doi:10.1021/cm0492336.
  • Gomez, L., V. Sebastian, S. Irusta, A. Ibarra, M. Arruebo, and J. Santamaria. 2014. Scaled-up production of plasmonic nanoparticles using microfluidics: From metal precursors to functionalized and sterilized nanoparticles. Lab on a Chip 14 (2):325–32. doi:10.1039/c3lc50999k.
  • Goodman, C., C. McCusker, T. Yilmaz, and V. M. Rotello. 2004. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry 15 (4):897–900. doi:10.1021/bc049951i.
  • Halder, A., S. Das, D. Ojha, D. Chattopadhyay, and A. Mukherjee. 2018. Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Materials Science & Engineering. C, Materials for Biological Applications 89:413–21. doi:10.1016/j.msec.2018.04.005.
  • Han, G., P. Ghosh, and V. M. Rotello. 2007. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2 (1):113–23. doi:10.2217/17435889.2.1.113.
  • Hayat, M. 1989. Colloidal gold: Principles, methods and applications. San Diego, CA: Academic.
  • Her, S., A. D. Jaffray, and C. Allen. 2017. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews 109:84–101. doi:10.1016/j.addr.2015.12.012.
  • Horikoshi, S., and N. Serpone. 2013. Introduction to nanotechnology, 1–24. London: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Hosny, M., A. S. Eltaweil, M. Mostafa, Y. A. El-Badry, E. E. Hussein, A. M. Omer, and M. Fawzy. 2022. Facile synthesis of gold nanoparticles for anticancer, antioxidant applications, and photocatalytic degradation of toxic organic pollutants. ACS Omega 7 (3):3121–33. doi:10.1021/acsomega.1c06714.
  • Hosny, M., M. Fawzy, A. M. Abdelfatah, E. E. Fawzy, and A. S. Eltaweil. 2021. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. Advanced Powder Technology 32 (9):3220–33. doi doi:10.1016/j.apt.2021.07.008.
  • Hosny, M., M. Fawzy, Y. A. El-Badry, E. E. Hussein, and A. S. Eltaweil. 2022. Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. Journal of Saudi Chemical Society 26 (2):101419. doi:10.1016/j.jscs.2022.101419.
  • Huang, D., F. Liao, S. Molesa, D. Redinger, and V. Subramanian. 2003. Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. Journal of the Electrochemical Society 150 (7):G412–417. doi:10.1149/1.1582466.
  • Hughes, G. A. 2005. Nanostructure-mediated drug delivery. Nanomedicine : Nanotechnology,Biology, and Medicine 1 (1):22–30. doi:10.1016/j.nano.2004.11.009.
  • Hussain, M. S., S. Fareed, S. Ansari, M. A. Rahman, I. Z. Ahmad, and M. Saeed. 2012. Current approaches toward production of secondary plant metabolites. Journal of Pharmacy & Bioallied Sciences 4 (1):10–20. doi:10.4103/0975-7406.92725.
  • Hutchison, J. E. 2008. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2 (3):395–402. doi:10.1021/nn800131j.
  • Ibrahim, A., P. B. Oldham, D. L. Stokes, and T. Vo-Dinh. 1996. Determination of enhancement factors for surface-enhanced FT-Raman spectroscopy on gold and silver surfaces. Journal of Raman Spectroscopy 27 (12):887–91. doi:10.1002/(sici)1097-4555(199612)27:12<887::aid-jrs46>3.0.co;2-2.
  • Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry 13 (10):2638–50. doi:10.1039/c1gc15386b.
  • Jagannathan, R., P. Poddar, and A. Prabhune. 2007. Cephalexin mediated synthesis of Quasi- spherical and anisotropic gold nanoparticles and their in situ capping by the antibiotic. The Journal of Physical Chemistry C 111 (19):6933–8. doi:10.1021/jp067645r.
  • Jai Poinern, G. E., P. Chapman, X. Le, and D. Fawcett. 2013. Green biosynthesis of gold nanometer scale plates using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bulletin 46 (3):165–73. doi:10.1007/s13404-013-0096-7.
  • Jain, K. K. 2005. Nanotechnology-based lab-on-achip devices. In Encyclopedia of diagnostic genomics and proteomics, 891–5. New York: Marcel Dekkar Inc.
  • Jayaseelan, C., R. Ramkumar, A. Rahuman, and P. Perumal. 2013. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Industrial Crops and Products 45:423–9. doi:10.1016/j.indcrop.2012.12.019.
  • Joshi, P., V. Shewale, R. Pandey, V. Shanker, S. Hussain, and S. P. Karna. 2011. Tryptophan-gold nanoparticle interaction: A first-principles Quantum mechanical study. The Journal of Physical Chemistry C 115 (46):22818–26. doi:10.1021/jp2070437.
  • Junghanns, J. A. H., and R. H. Müller. 2008. Nanocrystal technology, drug delivery and clinical applications. International Journal of Nanomedicine 3 (3):295–309. doi:10.2147/ijn.s595.
  • Kakkar, V., and I. P. Kaur. 2012. Preparation, characterization and scale-up of sesamol loaded solid lipid nanoparticles. Nanotechnology Development 2 (1):e8–e8. doi:10.4081/nd.2012.e8.
  • Karuppiah, C., S. Palanisamy, S.-M. Chen, R. Emmanue, K. Muthupandi, and P. Prakash. 2015. Green synthesis of gold nanoparticles and its application for the trace level determination of painter’s colic. RSC Advances 5 (21):16284–91. doi:10.1039/C4RA14988B.
  • Kemp, M. M., A. Kumar, S. Mousa, T. J. Park, P. Ajayan, N. Kubotera, S. A. Mousa, and R. A. Linhardt. 2009. Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycan’s having distinct biological activities. Biomacromolecules 10 (3):589–95. doi:10.1021/bm801266t.
  • Khalil, M. M. H., E. H. Ismail, and F. El-Magdoub. 2012. Biosynthesis of Au nanoparticles using olive leaf extract. Arabian Journal of Chemistry 5 (4):431–7. doi:10.1016/j.arabjc.2010.11.011.
  • Khan, A. K., R. Rashid, G. Murtaza, and A. Zahra. 2014. Gold nanoparticles synthesis and applications in drug delivery. Tropical Journal of Pharmaceutical Research 13 (7):1169–77. doi:10.4314/tjpr.v13i7.23.
  • Kharlamov, A. N., and J. L. Gabinsky. 2012. Plasmonic photothermic and stem cell therapy of atherosclerotic plaque as a novel nanotool for angioplasty and artery remodeling. Rejuvenation Research 15 (2):222–30. doi:10.1089/rej.2011.1305.
  • Kharlamov, A. N., A. E. Tyurnina, V. S. Veselova, O. P. Kovtun, V. Y. Shur, and J. L. Gabinsky. 2015. Silica-gold nanoparticles for athero protective management of plaques: Results of the NANOM-FIM trial. Nanoscale 7 (17):8003–15. doi:10.1039/c5nr01050k.
  • Kim, B., S. L. Tripp, and A. Wei. 2001. Self-organization of large gold nanoparticle arrays. Journal of the American Chemical Society 123 (32):7955–6. doi:10.1021/ja0160344.
  • Kobayashi, Y., H. Inose, R. Nagasu, T. Nakagawa, Y. Kubota, K. Gonda, and N. Ohuchi. 2013. X-ray imaging technique using colloid solution of Au/silica/poly(ethylene glycol) nanoparticles. Materials Research Innovations 17 (7):507–14. doi:10.1179/1433075X13Y.0000000100.
  • Kobayashi, Y., H. Matsudo, T. Li, K. Shibuya, Y. Kubota, T. Oikawa, T. Nakagawa, and K. Gonda. 2016. Fabrication of quantum dot/silica core-shell particles immobilizing Au nanoparticles and their dual imaging functions. Applied Nanoscience 6 (3):301–7. doi:10.1007/s13204-015-0440-8.
  • Koch, C. C. 2003. Top-down synthesis of nanostructured materials; mechanical and thermal processing methods. Reviews on Advanced Materials Science 5:91–9. ISSN 1606–5131
  • Kou, J., and R. S. Varma. 2012. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. ChemSusChem 5 (12):2435–41. doi:10.1002/cssc.201200477.
  • Kreuter, J. 1994. Nanoparticles. In Colloidal drug delivery systems, 219–342. New York: Marcel Dekker.
  • Kruis, F. E., H. Fissan, and A. Peled. 1998. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications–a review. Journal of Aerosol Science 29 (5-6):511–35. doi:10.1016/S0021-8502(97)10032-5.
  • Kumar, S., K. S. Gandhi, and R. Kumar. 2007. Modeling of formation of gold nanoparticles by citrate method. Industrial & Engineering Chemistry Research 46 (10):3128–36. doi:10.1021/ie060672j.
  • Ladj, R., A. Bitar, M. M. Eissa, H. Fessi, Y. Mugnier, R. Le Dantec, and A. Elaissari. 2013. Polymer encapsulation of inorganic nanoparticles for biomedical applications. International Journal of Pharmaceutics 458 (1):230–41. doi:10.1016/j.ijpharm.2013.09.00.
  • Lamprecht, A., N. Ubrich, M. Hombreiro Pérez, C. Lehr, M. Hoffman, and P. Maincent. 1999. Biodegradable mono dispersed nanoparticles prepared by pressure homogenization emulsification. International Journal of Pharmaceutics 184 (1):97–105. doi:10.1016/S0378-5173(99)00107-6.
  • Langer, R. 1998. Drug delivery and targeting. Nature 392 (6679 Suppl):5–10.
  • Lehner, R., X. Wang, S. Marsch, and P. Hunziker. 2013. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. Nanomedicine : nanotechnology, Biology, and Medicine 9 (6):742–57. doi:10.1016/j.nano.2013.01.012.
  • Li, J. F., Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, et al. 2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464 (7287):392–5. doi:10.1038/nature08907.
  • Link, S., and M. A. El Sayed. 2003. Optical properties and ultrafast dynamics of metallic nanocrystals. Annual Review of Physical Chemistry 54:331–66. doi:10.1146/annurev.physchem.54.011002.103759.
  • Link, S., and M. A. El-Sayed. 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B 103 (40):8410–26. doi:10.1021/jp9917648.
  • Liu, X., N. Huang, H. Li, Q. Jin, and J. Ji. 2013. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir : The ACS Journal of Surfaces and Colloids 29 (29):9138–48. doi:10.1021/la401556k.
  • Liu, B., J. Xie, J. Y. Lee, Y. P. Ting, and J. Paul Chen. 2005. Optimization of high-yield biological synthesis of single crystalline gold nanoplates. The Journal of Physical Chemistry. B 109 (32):15256–63. doi:10.1021/jp051449n.
  • Li, L., and J. Weng. 2010. Enzymatic synthesis of gold nanoflowers with trypsin. Nanotechnology 21 (30):305603. doi:10.1088/0957-4484/21/30/305603.
  • Mal, S., T. Saha, A. Halder, K. S. Paidesetty, S. Das, W. Wui, U. Chatterji, and P. Roy. 2023. EGF-conjugated bio-safe luteolin gold nanoparticles induce cellular toxicity and cell death mediated by site-specific rapid uptake in human triple negative breast cancer cells. Journal of Drug Delivery Science and Technology 80:104148. doi:10.1016/j.jddst.2022.104148.
  • Masala, O., and R. Seshadri. 2004. Synthesis routes for large volumes of nanoparticles. Annual Review of Materials Research 34 (1):41–81. doi:10.1146/annurev.matsci.34.052803.090949.
  • Miftahurrahman, G., H. Setiarahayu, and A. Nandiyanto. 2019. An economic evaluation on scaling-up production of nano gold from laboratory to industrial scale. Indonesian Journal of Computing, Engineering and Design (IJoCED) 1 (1):29–36. doi:10.35806/ijoced.v1i1.34.
  • Murphy, C. J., A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter. 2008. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Accounts of Chemical Research 41 (12):1721–30. doi:10.1021/ar800035u.
  • Muthu, M. S., C. V. Rajesh, A. Mishra, and S. Singh. 2009. Stimulus-responsive targeted nanomicelles for effective cancer therapy. Nanomedicine (London, England) 4 (6):657–67. doi:10.2217/nnm.09.44.
  • Nagata, Y., Y. Mizukoshi, K. Okitsu, and Y. Maeda. 1996. Sono chemical formation of gold particles in aqueous solution. Radiation Research 146 (3):333–8. doi:10.2307/3579465.
  • Nativo, P., I. A. Prior, and M. Brust. 2008. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2 (8):1639–44. doi:10.1021/nn800330a.
  • Nel, A., T. Xia, L. Madler, and N. Li. 2006. Toxic potential of materials at the nano level. Science (New York, N.Y.) 311 (5761):622–7. doi:10.1126/science.1114397.
  • Noruzi, M., D. Zare, K. Khoshnevisan, and D. Davoodi. 2011. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 79 (5):1461–5. doi:10.1016/j.saa.2011.05.001.
  • Oberdorster, G. 2010. Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. Journal of Internal Medicine 267:89–105. doi:10.1111/j.1365-2796.2009.02187.x.
  • Okitsu, K., M. Ashokkumar, and F. Grieser. 2005. Sonochemical synthesis of gold nanoparticles: Effects of ultrasound frequency. The Journal of Physical Chemistry. B 109 (44):20673–5. doi:10.1021/jp0549374.
  • Pan, X., and R. J. Lee. 2004. Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opinion on Drug Delivery 1 (1):7–17. doi:10.1517/17425247.1.1.7.
  • Papavassiliou, G. C. 1979. Optical properties of small inorganic and organic metal particles. Progress in Solid State Chemistry 12 (3–4):185–271. doi:10.1016/0079-6786(79)90001-3.
  • Patra, S., S. Mukherjee, A. K. Barui, A. Ganguly, B. Sreedhar, and C. R. Patra. 2015. Green synthesis characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science & Engineering. C, Materials for Biological Applications 53 (53):298–309. doi:10.1016/j.msec.2015.04.048.
  • Paviolo, C., and P. R. Stoddart. 2017. Gold nanoparticles for modulating neuronal behavior. Nanomaterials 7 (4):92. doi:10.3390/nano7040092.
  • Pender, D. S., L. M. Vangala, V. D. Badwaik, H. Thompson, R. Paripelly, and R. Dakshinamurthy. 2013. A New class of gold nanoantibitoics- direct coating of ampicillin on gold nanoparticles. Pharmaceutical Nanotechnology 1 (2):126–35. doi:10.2174/2211738511301020008.
  • Pennemann, H., V. Hessel, and H. Löwe. 2004. Chemical microprocess technology—from laboratory-scale to production. Chemical Engineering Science 59 (22–23):4789–94. doi:10.1016/j.ces.2004.07.049.
  • Pessina, F., and D. Spitzer. 2017. The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Beilstein Journal of Nanotechnology 8:452–66. doi:10.3762/bjnano.8.49.
  • Petschacher, C., A. Eitzlmayr, M. Besenhard, J. Wagner, J. Barthelmes, A. Bernkop-Schnürch, J. G. Khinast, and A. Zimmer. 2013. Thinking continuously: A microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polymer Chemistry 4 (7):2342–52. doi:10.1039/c3py20939c.
  • Porta, R., M. Benaglia, and A. Puglisi. 2016. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Organic Process Research & Development 20 (1):2–25. doi:10.1021/acs.oprd.5b00325.
  • Pottier, A., E. Borghi, and L. Levy. 2014. New use of metals as nanosized radioenhancers. Anticancer Research 34 (1B):443–53.
  • Prasad, B. L. V., S. I. Stoeva, C. M. Sorensen, and K. J. Klabunde. 2003. Digestive ripening agents for gold nanoparticles: Alternatives to thiols. Chemistry of Materials 15 (4):935–42. doi:10.1021/cm0206439.
  • Ragelle, H., F. Danhier, V. Préat, R. Langer, and D. G. Anderson. 2017. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opinion on Drug Delivery 14 (7):851–64. doi:10.1080/17425247.2016.1244187.
  • Ramesh, P., A. Rajendran, and M. Sundaram. 2014. Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculata. Journal of NanoScience and NanoTechnology 2:41–5.
  • Ranjan, A. P., A. Mukerjee, L. Helson, and J. K. Vishwanatha. 2012. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. Journal of Nanobiotechnology 10 (1):1–18. doi:10.1186/1477-3155-10-38.
  • Rojo, J., V. Díaz, J. M. de la Fuente, I. Segura, A. G. Barrientos, H. H. Riese, A. Bernad, and S. Penadés. 2004. Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem: a European Journal of Chemical Biology 5 (3):291–7. doi:10.1002/cbic.200300726.
  • Salameh, S., J. Gómez-Hernández, A. Goulas, H. Van Bui, and J. R. van Ommen. 2017. Advances in scalable gas-phase manufacturing and processing of nanostructured solids: A review. Particuology 30:15–39. doi:10.1016/j.partic.2016.07.003.
  • Sanders, M. 2000. A review of controlled clinical trials examining the effects of antimalarial compounds and gold compounds on radiographic progression in rheumatoid arthritis. The Journal of Rheumatology 27 (2):523–9.
  • Saraf, S. 2009. Process optimization for the production of nanoparticles for drug delivery applications. Expert Opinion on Drug Delivery 6 (2):187–96. doi:10.1517/17425240902735806.
  • Sardar, R., A. M. Funston, P. Mulvaney, and R. W. Murray. 2009. Gold nanoparticles: Past, present, and future. Langmuir : The ACS Journal of Surfaces and Colloids 25 (24):13840–51. doi:10.1021/la9019475.
  • Sau, T. K., A. Pal, N. R. Jana, Z. L. Wang, and T. Pal. 2001. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. Journal of Nanoparticle Research 3 (4):257–61. doi:10.1023/A:1017567225071.
  • Shao, Y., Y. Jin, and S. Dong. 2004. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications 9 (9):1104–5. doi:10.1039/b315732f.
  • Sharma, N., A. K. Pinnaka, M. Raje, A. Fnu, M. S. Bhattacharyya, and A. R. Choudhury. 2012. Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories 11:86. doi:10.1186/1475-2859-11-86.
  • Shi, J., A. R. Votruba, O. C. Farokhzad, and R. Langer. 2010. Nanotechnology in drug delivery and tissue engineering. From discovery to applications. Nano Letters 10 (9):3223–30. doi:10.1021/nl102184c.
  • Shivaji, S., S. Madhu, and S. Singh. 2011. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry 46 (9):1800–7. doi:10.1016/j.procbio.2011.06.008.
  • Shivananda, C. S., S. Asha, R. Madhukumar, S. Satish, B. Narayana, K. Byrappa, Y. Wang, and Y. Sangappa. 2016a. Bio-synthesis of colloidal nanoparticles: Their characterization and antibacterial activity. Biomedical Physics & Engineering Express 2 (3):035004. doi:10.1088/2057-1976/2/3/035004.
  • Smitha, S. L., D. Philip, and K. G. Gopchandran. 2009. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 74 (3):735–9. doi:10.1016/j.saa.2009.08.007.
  • Song, Y., J. Hormes, and C. S. S. R. Kumar. 2008. Microfluidics synthesis of nanomaterials. Small 4 (6):698–711.
  • Stewart, B. W., and A. S. Coates. 2005. Cancer prevention: A global perspective. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 23 (2):392–403. doi:10.1200/jco.2005.05.132.
  • Stylianopoulos, T., K. Soteriou, D. Fukumura, and R. K. Jain. 2013. Cationic nanoparticle shave superior trans vascular flux into solid tumors: Insights from a mathematical model. Annals of Biomedical Engineering 41 (1):68–77. doi:10.1007/s10439-012-0630-4.
  • Svenson, S. 2014. What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 6 (2):125–35. doi:10.1002/wnan.1257.
  • Sykes, E. A., J. Chen, G. Zheng, and W. C. W. Chan. 2014. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8 (6):5696–706. doi:10.1021/nn500299p.
  • Thiesen, B., and A. Jordan. 2008. Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 24 (6):467–74. doi:10.1080/02656730802104757.
  • Tomić, S., J. Ðokić, S. Vasilijić, N. Ogrinc, R. Rudolf, P. Pelicon, D. Vučević, P. Milosavljević, S. Janković, I. Anžel, et al. 2014. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PloS One 9 (5):e96584. doi:10.1371/journal.pone.0096584.
  • Tozawa, T. 2004. Dendron-grafted sulfur-terminated phenyleneethynylene molecular rods and blue luminescence self-assembly with Au nanoparticles. Chemical Communications (17):1904–5. doi:10.1039/B404010D.
  • Trotta, M., F. Debernardi, and O. Caputo. 2003. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. International Journal of Pharmaceutics 257 (1–2):153–60. doi:10.1016/S0378-5173(03)00135-2.
  • Tsuzuki, T., and P. G. McCormick. 2004. Mechanochemical synthesis of nanoparticles. Journal of Materials Science 39 (16/17):5143–6. doi:10.1023/B:JMSC.0000039199.56155.f9.
  • Varma, R. S. 2012. Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering 1 (2):123–8. doi:10.1016/j.coche.2011.12.002.
  • Venkatpurwar, V. P., and V. B. Pokharkar. 2010. Biosynthesis of gold nanoparticles using therapeutic enzyme in vitro and in-vivo efficacy study. Journal of Biomedical Nanotechnology 6 (6):667–74. doi:10.1166/jbn.2010.1163.
  • Vericat, C., M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza. 2010. Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chemical Society Reviews 39 (5):1805–34. doi:10.1039/b907301a.
  • Virkutyte, J., and R. S. Varma. 2011. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science 2 (5):837–46. doi:10.1039/C0SC00338G.
  • Vladisavljević, G. T., N. Khalid, M. A. Neves, T. Kuroiwa, M. Nakajima, K. Uemura, S. Ichikawa, and I. Kobayashi. 2013. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews 65 (11–12):1626–63. doi:10.1016/j.addr.2013.07.017.
  • Wagner, V., A. Dullaart, A.-K. Bock, and A. Zweck. 2006. The emerging nanomedicine landscape. Nature Biotechnology 24 (10):1211–7. doi:10.1038/nbt1006-1211.
  • Whitesides, G. M. 2006. The origins and the future of microfluidics. Nature 442 (7101):368–73. doi:10.1038/nature05058.
  • Willets, K. A., and R. P. Van Duyne. 2007. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry 58:267–97. doi:10.1146/annurev.physchem.58.032806.104607.
  • Wright, G. D. 1999. Aminoglycoside-modifying enzymes. Current Opinion in Microbiology 2 (5):499–503. doi:10.1016/S1369-5274(99)00007-7.
  • Yafout, M., A. Ousaid, Y. Khayati, and I. Otmani Sbai. 2021. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Scientific African 11: E00685. doi:10.1016/j.sciaf.2020.e00685.
  • Yen, H. J., S. H. Hsu, and C. L. Tsai. 2009. Cytotoxicity and immuno-logical response of gold and silver nanoparticles of different sizes. Small (Weinheim an der Bergstrasse, Germany) 5 (13):1553–61. doi:10.1002/smll.200900126.
  • Zeng, S., X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong. 2013. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors and Actuators B: Chemical 176:1128–33. doi:10.1016/j.snb.2012.09.073.
  • Zhang, X.-F., Z.-G. Liu, W. Shen, and S. Gurunathan. 2016. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences 17 (9):1534. doi:10.3390/ijms17091534.
  • Zhao, Y., Y. Tian, Y. Cui, W. Liu, W. Ma, and X. Jiang. 2010. Small molecule capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. Journal of the American Chemical Society 132 (35):12349–56. doi:10.1021/ja1028843.
  • Zijlstra, P., J. W. M. Chon, and M. Gu. 2009. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459 (7245):410–3. doi:10.1038/nature08053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.