50
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on the flow characteristics and erosion wear of the various multi-phase flow handling equipment

&

References

  • Ahlert, K. R. 1994. Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 steel. Doctoral dissertation, BUniversity of Tulsa.
  • Alam, T., and Z. N. Farhat. 2018. Slurry erosion surface damage under normal impact for pipeline steels. Engineering Failure Analysis 90:116–28. doi: 10.1016/j.engfailanal.2018.03.019.
  • Alam, T., M. Aminul Islam, and Z. N. Farhat. 2016. Slurry erosion of pipeline steel: Effect of velocity and microstructure. Journal of Tribology 138 (2):021604. doi: 10.1115/1.4031599.
  • Amarendra, H. J., G. P. Chaudhari, and S. K. Nath. 2012. Cavitation and slurry erosion of aluminum in the slurry pot tester. Materials Science Forum 736:218–22. Ltd. doi: 10.4028/www.scientific.net/MSF.736.218.
  • Amarendra, H. J., P. Kalhan, G. P. Chaudhari, S. K. Nath, and S. Kumar. 2012. Slurry erosion response of heat treated 13Cr-4Ni martensitic stainless steel. Materials Science Forum 710:500–5. doi: 10.4028/www.scientific.net/MSF.710.500.
  • Ananya, L., Y. K. Baghel, and V. K. Patel. 2023. Computational analysis of erosion wear in various angle bent pipes. Materials Today: Proceedings 80:1150–7. doi: 10.1016/j.matpr.2022.12.123.
  • Ansys. 2017. Ansys Fluent User’s Guide. Release 18.1. Ansys. Sections 16.10.1-16.10.4.
  • Arabnejad, H., A. Mansouri, S. A. Shirazi, and B. S. McLaury. 2015. Development of mechanistic erosion equation for solid particles. Wear 332–333:1044–50. doi: 10.1016/j.wear.2015.01.031.
  • Athulya, A. S., and R. M. Cherian. 2016. CFD modelling of multiphase flow through T junction. Procedia Technology 24:325–31. doi: 10.1016/j.protcy.2016.05.043.
  • Baghel, Y. K., J. Kumar, B. Kishor, A. Rawat, and V. K. Patel. 2020. Effect of hot forging on the slurry erosion wear of AISI316 and AISI410 steel. Materials Today: Proceedings 26:1740–5. doi: 10.1016/j.matpr.2020.02.366.
  • Banakermani, M. R., H. Naderan, and M. Saffar-Avval. 2018. An investigation of erosion prediction for 15 to 90 elbows by numerical simulation of gas-solid flow. Powder Technology 334:9–26. doi: 10.1016/j.powtec.2018.04.033.
  • Ben-Mansour, R., Badr, H. M. Araoye, A. A. Toor, and I. U. H. 2021. Computational analysis of water-submerged jet erosion. Energies 14 (11):3074. doi: 10.3390/en14113074.
  • Beyralvand, D., F. Banazadeh, and R. Moghaddas. 2023. Numerical investigation of novel geometric solutions for erosion problem of standard elbows in gas-solid flow using CFD-DEM. Results in Engineering 17:101014. doi: 10.1016/j.rineng.2023.101014.
  • Bilal, F. S., T. A. Sedrez, and S. A. Shirazi. 2021. Experimental and CFD investigations of 45 and 90 degrees bends and various elbow curvature radii effects on solid particle erosion. Wear 476:203646. doi: 10.1016/j.wear.2021.203646.
  • Bitter, J. G. A. 1963a. A study of erosion phenomena part I. Wear 6 (1):5–21. doi: 10.1016/0043-1648(63)90003-6.
  • Bitter, J. G. A. 1963b. A study of erosion phenomena: Part II. Wear 6 (3):169–90. doi: 10.1016/0043-1648(63)90073-5.
  • Blanchard, D. J., P. Griffith, and E. Rabinowicz. 1984. Erosion of a pipe bend by solid particles entrained in water. Journal of Manufacturing Science and Engineering 106 (3):213–7. doi: 10.1115/1.3185935.
  • Brown, G. J. 2002. Erosion prediction in slurry pipeline tee-junctions. Applied Mathematical Modelling 26 (2):155–70. doi: 10.1016/S0307-904X(01)00053-1.
  • Chailad, W., L. Yang, V. Coveney, C. Bowen, and A. Bickley. 2022. Development of slurry-jet erosion test for elastomeric materials. Wear 488–489:204125. doi: 10.1016/j.wear.2021.204125.
  • Chandel, S., S. N. Singh, and V. Seshadri. 2012. Experimental study of erosion wear in a centrifugal slurry pump using coriolis wear test rig. Particulate Science and Technology 30 (2):179–95. doi: 10.1080/02726351.2010.523926.
  • Chen, X., B. S. McLaury, and S. A. Shirazi. 2004. Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees. Computers & Fluids 33 (10):1251–72. doi: 10.1016/j.compfluid.2004.02.003.
  • Chen, X., B. S. McLaury, and S. A. Shirazi. 2006. Numerical and experimental investigation of the relative erosion severity between plugged tees and elbows in dilute gas/solid two-phase flow. Wear 261 (7–8):715–29. doi: 10.1016/j.wear.2006.01.022.
  • Clark, H. M. 1991. On the impact rate and impact energy of particles in a slurry pot erosion tester. Wear 147 (1):165–83. doi: 10.1016/0043-1648(91)90127-G.
  • Clark, H. M., H. M. Hawthorne, and Y. Xie. 1999. Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear 233–235:319–27. doi: 10.1016/S0043-1648(99)00213-6.
  • Clark, H. M., J. Tuzson, and K. K. Wong. 2000. Measurements of specific energies for erosive wear using a Coriolis erosion tester. Wear 241 (1):1–9. doi: 10.1016/S0043-1648(00)00327-6.
  • Dos Santos, V. F., F. J. de Souza, and C. A. R. Duarte. 2016. Reducing bend erosion with a twisted tape insert. Powder Technology 301:889–910. doi: 10.1016/j.powtec.2016.07.020.
  • Duarte, C. A. R, and F. J. de Souza. 2017. Innovative pipe wall design to mitigate elbow erosion: A CFD analysis. Wear 380–381:176–90. doi: 10.1016/j.wear.2017.03.015.
  • Duarte, C. A. R., F. J. de Souza, and V. F. dos Santos. 2016. Mitigating elbow erosion with a vortex chamber. Powder Technology 288:6–25. doi: 10.1016/j.powtec.2015.10.032.
  • Duarte, C. A. R., F. J. de Souza, R. d. V. Salvo, and V. F. dos Santos. 2017. The role of inter-particle collisions on elbow erosion. International Journal of Multiphase Flow 89:1–22. doi: 10.1016/j.ijmultiphaseflow.2016.10.001.
  • Edwards, J. K., B. S. McLaury, and S. A. Shirazi. 2001. Modeling solid particle erosion in elbows and plugged tees. Journal of Energy Resources Technology 123 (4):277–84. doi: 10.1115/1.1413773.
  • Elemuren, R., R. Evitts, I. Oguocha, G. Kennell, R. Gerspacher, and A. Odeshi. 2018. Slurry erosion-corrosion of 90 AISI 1018 steel elbow in saturated potash brine containing abrasive silica particles. Wear 410–411:149–55. doi: 10.1016/j.wear.2018.06.010.
  • Elkholy, A. 1983. Prediction of abrasion wear for slurry pump materials. Wear 84 (1):39–49. doi: 10.1016/0043-1648(83)90117-5.
  • Farokhipour, A., Z. Mansoori, M. Saffar-Avval, and G. Ahmadi. 2020. 3D computational modeling of sand erosion in gas-liquid-particle multiphase annular flows in bends. Wear 450–451:203241. doi: 10.1016/j.wear.2020.203241.
  • Finnie, I. 1960. Erosion of surfaces by solid particles. Wear 3 (2):87–103. doi: 10.1016/0043-1648(60)90055-7.
  • Frosell, T., M. Fripp, and E. Gutmark. 2015. Investigation of slurry concentration effects on solid particle erosion rate for an impinging jet. Wear 342–343:33–43. doi: 10.1016/j.wear.2015.08.003.
  • Gadhikar, A. A., A. Sharma, D. B. Goel, and C. P. Sharma. 2011. Fabrication and testing of slurry pot erosion tester. Transactions of the Indian Institute of Metals 64 (4–5):493–500. doi: 10.1007/s12666-011-0075-8.
  • Gandhi, B. K., and S. V. Borse. 2004. Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles. Wear 257 (1–2):73–9. doi: 10.1016/j.wear.2003.10.013.
  • Girisha, K. G., K. S. Rao, K. C. Anil, and S. Sanman. 2017. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel. In IOP Conference Series: Materials Science and Engineering (Vol. 191, p. 012022). IOP Publishing. doi: 10.1088/1757-899X/191/1/012022.
  • Grant, G., and W. Tabakoff. 1975. Erosion prediction in turbomachinery resulting from environmental solid particles. Journal of Aircraft 12 (5):471–8. doi: 10.2514/3.59826.
  • Grewal, H. S., H. S. Arora, A. Agrawal, H. Singh, and S. Mukherjee. 2013. Slurry erosion of thermal spray coatings: Effect of sand concentration. Procedia Engineering 68:484–90. doi: 10.1016/j.proeng.2013.12.210.
  • Gupta, R., S. N. Singh, and V. Sehadri. 1995. Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester. Wear 184 (2):169–78. doi: 10.1016/0043-1648(94)06566-7.
  • Hawthorne, H. M., Y. Xie, and S. K. Yick. 2003. A new Coriolis slurry erosion tester design for improved slurry dynamics. Wear 255 (1–6):170–80. doi: 10.1016/S0043-1648(03)00060-7.
  • Hutchings, I. M. 1981. A model for the erosion of metals by spherical particles at normal incidence. Wear 70 (3):269–81. doi: 10.1016/0043-1648(81)90347-1.
  • Islam, M. A., T. Alam, Z. N. Farhat, A. Mohamed, and A. Alfantazi. 2015. Effect of microstructure on the erosion behavior of carbon steel. Wear 332–333:1080–9. doi: 10.1016/j.wear.2014.12.004.
  • Ismail, I., J. C. Gamio, S. A. Bukhari, and W. Q. Yang. 2005. Tomography for multi-phase flow measurement in the oil industry. Flow Measurement and Instrumentation 16 (2–3):145–55. doi: 10.1016/j.flowmeasinst.2005.02.017.
  • Iwai, Y., and K. Nambu. 1997. Slurry wear properties of pump lining materials. Wear 210 (1–2):211–9. doi: 10.1016/S0043-1648(97)00055-0.
  • Ji, X., H. Duan, H. Zhang, and J. Ma. 2015. Slurry erosion resistance of laser clad NiCoCrFeAl3 high-entropy alloy coatings. Tribology Transactions 58 (6):1119–23. doi: 10.1080/10402004.2015.1044148.
  • Jones, L. C. 2011. Low angle scouring erosion behaviour of elastomeric materials. Wear 271 (9–10):1411–7. doi: 10.1016/j.wear.2010.12.057.
  • Kang, R., and H. Liu. 2019. A probability model of predicting the sand erosion in elbows for annular flow. Wear 422–423:167–79. doi: 10.1016/j.wear.2019.01.059.
  • Kannojiya, V., S. Kumar, M. Kanwar, and S. K. Mohapatra. 2016. Simulation of erosion wear in slurry pipe line using CFD. Applied Mechanics and Materials 852:459–65. doi: 10.4028/www.scientific.net/AMM.852.459.
  • Karthik, S., and H. J. Amarendra. 2021. Development of slurry jet erosion test rig–An aid to investigate erosion resistance of materials. Materials Today: Proceedings 46:4426–30. doi: 10.1016/j.matpr.2020.09.674.
  • Kishor, B., G. P. Chaudhari, and S. K. Nath. 2016. Slurry erosion of thermo-mechanically processed 13Cr4Ni stainless steel. Tribology International 93:50–7. doi: 10.1016/j.triboint.2015.08.048.
  • Kumar, J., Y. K. Baghel, G. Tiwari, A. Rawat, and V. K. Patel. 2020. Effect of swirl vanes angle on erosion behaviour of AISI 316 pipe bend. Materials Today: Proceedings 26:781–6. doi: 10.1016/j.matpr.2020.01.026.
  • Kumar, J., Y. K. Baghel, R. Srivastava, and V. K. Patel. 2020. Effect of additive on erosion behaviour of slurry pumps material. In AIP Conference Proceedings (Vol. 2273). AIP Publishing.
  • Kumar, K., S. Kumar, C. B. Tripathi, H. Sharma, and S. B. Prasad. 2020. Parametric optimization of slurry erosion behaviour of brass. Materials Today: Proceedings 26:1604–9. doi: 10.1016/j.matpr.2020.02.330.
  • Laguna-Camacho, J. R., A. Marquina-Chávez, J. V. Méndez-Méndez, M. Vite-Torres, and E. A. Gallardo-Hernández. 2013. Solid particle erosion of AISI 304, 316 and 420 stainless steels. Wear 301 (1–2):398–405. doi: 10.1016/j.wear.2012.12.047.
  • Larsson, P., N. Axén, and S. Hogmark. 2000. Improvements of the microstructure and erosion resistance of boron carbide with additives. Journal of Materials Science 35 (14):3433–40. doi: 10.1023/A:1004888522607.
  • Lin, F. Y., and H. S. Shao. 1991. Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester. Wear 143 (2):231–40. doi: 10.1016/0043-1648(91)90098-F.
  • Lindgren, M., and J. Perolainen. 2014. Slurry pot investigation of the influence of erodant characteristics on the erosion resistance of titanium. Wear 321:64–9. doi: 10.1016/j.wear.2014.10.005.
  • López, A., W. Nicholls, M. T. Stickland, and W. M. Dempster. 2015. CFD study of jet impingement test erosion using Ansys Fluent® and OpenFoam®. Computer Physics Communications 197:88–95. doi: 10.1016/j.cpc.2015.07.016.
  • Lynn, R. S., K. K. Wong, and H. M. Clark. 1991. On the particle size effect in slurry erosion. Wear 149 (1–2):55–71. doi: 10.1016/0043-1648(91)90364-Z.
  • Mandhane, J. M., G. A. Gregory, and K. Aziz. 1974. A flow pattern map for gas—liquid flow in horizontal pipes. International Journal of Multiphase Flow 1 (4):537–53. doi: 10.1016/0301-9322(74)90006-8.
  • Mansouri, A., H. Arabnejad, S. A. Shirazi, and B. S. McLaury. 2015. A combined CFD/experimental methodology for erosion prediction. Wear 332–333:1090–7. doi: 10.1016/j.wear.2014.11.025.
  • Mazumder, Q. H. 2012. Effect of liquid and gas velocities on magnitude and location of maximum erosion in U-bend. Open Journal of Fluid Dynamics 2:29–34. doi: 10.4236/ojfd.2012.22003.
  • McLaury, B. S., S. A. Shirazi, J. R. Shadley, and E. F. Rybicki. 1996. Modeling erosion in chokes. ASME-PUBLICATIONS-FED 236:773–82.
  • Messa, G. V., and S. Malavasi. 2018. A CFD-based method for slurry erosion prediction. Wear 398–399:127–45. doi: 10.1016/j.wear.2017.11.025.
  • Mishra, R., S. N. Singh, and V. Seshadri. 1998. Study of wear characteristics and solid distribution in constant area and erosion-resistant long-radius pipe bends for the flow of multisized particulate slurries. Wear 217 (2):297–306. doi: 10.1016/S0043-1648(98)00147-1.
  • More, S. R., D. V. Bhatt, and J. V. Menghani. 2017. Study of the parametric performance of solid particle erosion wear under the slurry pot test rig. Tribology in Industry 39 (4):471–81. doi: 10.24874/ti.2017.39.04.06.
  • More, S. R., D. V. Bhatt, and J. V. Menghani. 2019. Effect of microstructure and hardness on slurry erosion behaviour of A356 alloy using slurry pot test rig. Transactions of the Indian Institute of Metals 72 (12):3191–9. doi: 10.1007/s12666-019-01784-z.
  • Naik, H. K., M. K. Mishra, and K. U. Rao. 2011. Influence of chemical reagents on rheological properties of fly ash-water slurry at varying temperature environment. Coal Combustion and Gasification Products 3 (1):83–93. doi: 10.4177/CCGP-D-11-00015.1.
  • Nandre, B. D., and G. R. Desale. 2018. Study the effect of impact angle on slurry erosion wear of four different ductile materials. Materials Today: Proceedings 5 (2):7561–70. doi: 10.1016/j.matpr.2017.11.428.
  • Neilson, J. H., and A. Gilchrist. 1968. Erosion by a stream of solid particles. Wear 11 (2):111–22. doi: 10.1016/0043-1648(68)90591-7.
  • Nguyen, V. B., Q. B. Nguyen, Y. W. Zhang, C. Y. H. Lim, and B. C. Khoo. 2016. Effect of particle size on erosion characteristics. Wear 348–349:126–37. doi: 10.1016/j.wear.2015.12.003.
  • Nguyen, V. B., Q. B. Nguyen, Z. G. Liu, S. Wan, C. Y. H. Lim, and Y. W. Zhang. 2014. A combined numerical–experimental study on the effect of surface evolution on the water–sand multiphase flow characteristics and the material erosion behavior. Wear 319 (1–2):96–109. doi: 10.1016/j.wear.2014.07.017.
  • Ojala, N., K. Valtonen, J. Minkkinen, and V. T. Kuokkalanter. 2016. Edge effect in high speed slurry erosion wear tests of steels and elastomers. In The 17th Nordic Symposium on Tribology - NORDTRIB.Aulanko, Hämeenlinna, Finland, 14th–17th June 2016.
  • Ojala, N., K. Valtonen, P. Kivikytö-Reponen, P. Vuorinen, and V. T. Kuokkala. 2015. High speed slurry-pot erosion wear testing with large abrasive particles. Tribologia-Finnish Journal of Tribology 33 (1):36–44.
  • Ojala, N., K. Valtonen, P. Kivikytö-Reponen, P. Vuorinen, P. Siitonen, and V. T. Kuokkala. 2014. Effect of test parameters on large particle high speed slurry erosion testing. Tribology-Materials, Surfaces & Interfaces 8 (2):98–104. doi: 10.1179/1751584X14Y.0000000066.
  • Oka, Y. I., and T. Yoshida. 2005. Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear 259 (1–6):102–9. doi: 10.1016/j.wear.2005.01.040.
  • Oka, Y. I., H. Ohnogi, T. Hosokawa, and M. Matsumura. 1997. The impact angle dependence of erosion damage caused by solid particle impact. Wear 203–204:573–9. doi: 10.1016/S0043-1648(96)07430-3.
  • Oka, Y. I., K. Okamura, and T. Yoshida. 2005. Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear 259 (1–6):95–101. doi: 10.1016/j.wear.2005.01.039.
  • Oka, Y. I., M. Matsumura, and T. Kawabata. 1993. Relationship between surface hardness and erosion damage caused by solid particle impact. Wear 162–164:688–95. doi: 10.1016/0043-1648(93)90067-V.
  • Orozovic, O., H. Rajabnia, A. Lavrinec, Y. Alkassar, M. H. Meylan, K. Williams, M. G. Jones, and G. E. Klinzing. 2021. A phenomenological model for the pressure drop applicable across both dilute and dense phase pneumatic conveying. Chemical Engineering Science 246:116992. doi: 10.1016/j.ces.2021.116992.
  • Pagalthivarthi, K. V., and F. W. Helmly. 1992. Applications of materials wear testing to solids transport via centrifugal slurry pumps. Wear Testing of Advanced Materials 1167:114–26.
  • Parkash, O., A. Kumar, and B. S. Sikarwar. 2021. Computational erosion wear model validation of particulate flow through mitre pipe bend. Arabian Journal for Science and Engineering 46 (12):12373–90. doi: 10.1007/s13369-021-05931-x.
  • Parsi, M., M. Kara, M. Agrawal, N. Kesana, A. Jatale, P. Sharma, and S. Shirazi. 2017. CFD simulation of sand particle erosion under multiphase flow conditions. Wear 376–377:1176–84. doi: 10.1016/j.wear.2016.12.021.
  • Pei, J., A. Lui, Q. Zhang, T. Xiong, P. Jiang, and W. Wei. 2018. Numerical investigation of the maximum erosion zone in elbows for liquid-particle flow. Powder Technology 333:47–59. doi: 10.1016/j.powtec.2018.04.001.
  • Peng, W., and X. Cao. 2016. Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow. Powder Technology 294:266–79. doi: 10.1016/j.powtec.2016.02.030.
  • Rao, K. S., K. G. Girisha, and Y. D. Rakesh. 2016. Evaluation of slurry erosion wear characteristic of plasma sprayed TiO2 coated 410 steel. In IOP Conference Series: Materials Science and Engineering (Vol. 149, p. 012067). IOP Publishing. doi: 10.1088/1757-899X/149/1/012067.
  • Ryan, N. D., H. J. McQueen, and J. J. Jonas. 1983. The deformation behavior of types 304, 316, and 317 austenitic stainless steels during hot torsion. Canadian Metallurgical Quarterly 22 (3):369–78. doi: 10.1179/000844383795483626.
  • Safaei, M. R., O. Mahian, F. Garoosi, K. Hooman, A. Karimipour, S. N. Kazi, and S. Gharehkhani. 2014. Investigation of micro-and nanosized particle erosion in a 90 pipe bend using a two-phase discrete phase model. The Scientific World Journal 2014:1–12. doi: 10.1155/2014/740578.
  • Santa, J. F., J. C. Baena, and A. Toro. 2007. Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery. Wear 263 (1–6):258–64. doi: 10.1016/j.wear.2006.12.061.
  • Santa, J. F., L. A. Espitia, J. A. Blanco, S. A. Romo, and A. Toro. 2009. Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267 (1–4):160–7. doi: 10.1016/j.wear.2009.01.018.
  • Sarlin, E., M. Lindgren, R. Suihkonen, S. Siljander, M. Kakkonen, and J. Vuorinen. 2015. High-temperature slurry erosion of vinylester matrix composites–The effect of test parameters. Wear 328–329:488–97. doi: 10.1016/j.wear.2015.03.021.
  • Sarlin, E., M. Saarimäki, R. Sironen, M. Lindgren, S. Siljander, M. Kanerva, and J. Vuorinen. 2017. Erosive wear of filled vinylester composites in water and acidic media at elevated temperature. Wear 390–391:84–92. doi: 10.1016/j.wear.2017.07.011.
  • Sharma, A., V. R. Kiragi, M. Choudhary, S. K. Biswas, and A. Patnaik. 2019. Slurry erosion behaviour of marble powder filled needle punched nonwoven reinforced epoxy composite: An optimization using Taguchi approach. Materials Research Express 6 (10):105318. doi: 10.1088/2053-1591/ab373f.
  • Shivamurthy, R. C., M. Kamaraj, R. Nagarajan, S. M. Shariff, and G. Padmanabham. 2009. Influence of microstructure on slurry erosive wear characteristics of laser surface alloyed 13Cr–4Ni steel. Wear 267 (1–4):204–12. doi: 10.1016/j.wear.2008.12.027.
  • Singh, G., S. Kumar, and S. K. Mohapatra. 2015. Erosion wear analysis of slurry piping materials using Taguchi technique. International Journal of Applied Engineering Research 10 (78):2015.
  • Singh, G., S. Kumar, and S. K. Mohapatra. 2017. Erosion wear in a slurry pipe with multisized coal and bottom-ash slurries. Materials Today: Proceedings 4 (2):3565–71. doi: 10.1016/j.matpr.2017.02.248.
  • Singh, J., J. P. Singh, M. Singh, and M. Szala. 2019. Computational analysis of solid particle-erosion produced by bottom ash slurry in 90 elbow. In MATEC web of conferences (Vol. 252, p. 04008). EDP Sciences. doi: 10.1051/matecconf/201925204008.
  • Singh, V., S. Kumar, and S. K. Mohapatra. 2019. Modeling of erosion wear of sand water slurry flow through pipe bend using CFD. Journal of Applied Fluid Mechanics 12 (3):679–87. doi: 10.29252/jafm.12.03.29199.
  • Solnordal, C. B., C. Y. Wong, and J. Boulanger. 2015. An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow. Wear 336–337:43–57. doi: 10.1016/j.wear.2015.04.017.
  • Stack, M. M., and N. Pungwiwat. 1999. Slurry erosion of metallics, polymers, and ceramics: Particle size effects. Materials Science and Technology 15 (3):337–44. doi: 10.1179/026708399101505770.
  • Suchánek, J., V. Kuklík, and E. Zdravecká. 2009. Influence of microstructure on erosion resistance of steels. Wear 267 (11):2092–9. doi: 10.1016/j.wear.2009.08.004.
  • Sugiyama, K., S. Nakahama, S. Hattori, and K. Nakano. 2005. Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 258 (5–6):768–75. doi: 10.1016/j.wear.2004.09.006.
  • Suihkonen, R., M. Lindgren, S. Siljander, E. Sarlin, and J. Vuorinen. 2016. Erosion wear of vinylester matrix composites in aqueous and acidic environments at elevated temperatures. Wear 358–359:7–16. doi: 10.1016/j.wear.2016.03.026.
  • Sultan, R. A., M. A. Rahman, S. Rushd, S. Zendehboudi, and V. C. Kelessidis. 2019. Validation of CFD model of multiphase flow through pipeline and annular geometries. Particulate Science and Technology 37 (6):685–97. doi: 10.1080/02726351.2018.1435594.
  • Sundararajan, G. 1991. The depth of plastic deformation beneath eroded surfaces: The influence of impact angle and velocity, particle shape and material properties. Wear 149 (1–2):129–53. doi: 10.1016/0043-1648(91)90369-6.
  • Tarodiya, R., and B. K. Gandhi. 2019. Experimental investigation on slurry erosion behavior of 304L steel, grey cast iron, and high chromium white cast iron. Journal of Tribology 141 (9):091602. doi: 10.1115/1.4043903.
  • Thorn, R., G. A. Johansen, and B. T. Hjertaker. 2012. Three-phase flow measurement in the petroleum industry. Measurement Science and Technology 24 (1):012003. doi: 10.1088/0957-0233/24/1/012003.
  • Tian, H. H., G. R. Addie, and E. P. Barsh. 2007. A new impact erosion testing setup through Coriolis approach. Wear 263 (1–6):289–94. doi: 10.1016/j.wear.2007.01.090.
  • Tsai, W. J. A. I., J. A. C. Humphrey, I. Cornet, and A. V. Levy. 1981. Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68 (3):289–303. doi: 10.1016/0043-1648(81)90178-2.
  • Tuzson, J. J. 1984. Laboratory slurry erosion tests and pump wear rate calculations. J. Fluids Eng. 106(2): 135–40. doi: 10.1115/1.3243089
  • Tuzson, J., and H. McI. 1998. Clark, The slurry erosion process in the Coriolis erosion tester. In Proceedings of the ASME Fluids Engineering Division Meeting, Washington (pp. 1–5). Paper no. FEDSM98-5144.
  • Upadhayay, L., and S. Kumar. 2015. Numerical investigation of silicon carbide particle suspension behavior for enhancing uniform suspension in erosion wear test rig. International Journal of Advanced Research in Engineering and Applied Sciences 4 (6):1–10.
  • Veritas, D. N. 2007. Recommended practice RP O501 erosive wear in piping systems. DNV Recommended Practice 4:1–43.
  • Wang, Q., Q. Huang, N. Wang, Y. Wen, X. Ba, X. Sun, J. Zhang, S. Karimi, and S. A. Shirazi. 2021. An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series. Engineering Failure Analysis 130:105779. doi: 10.1016/j.engfailanal.2021.105779.
  • Wang, Y., R. Liu, M. Liu, and J. Yan. 2019. Numerical investigation on erosion characteristics of coplanar elbows connection for gas-solid flow. Energy Procedia 158:5245–50. doi: 10.1016/j.egypro.2019.01.655.
  • Wen, D. C. 2010. Improvement of slurry erosion resistance of martensite/ferrite duplex stainless steel by hot rolling. Metals and Materials International 16 (1):13–9. doi: 10.1007/s12540-010-0013-z.
  • Xie, Y., H. M. Clark, and H. M. Hawthorne. 1999. Modelling slurry particle dynamics in the Coriolis erosion tester. Wear 225–229:405–16. doi: 10.1016/S0043-1648(99)00016-2.
  • Xu, L., Q. Zhang, J. Zheng, and Y. Zhao. 2016. Numerical prediction of erosion in elbow based on CFD-DEM simulation. Powder Technology 302:236–46. doi: 10.1016/j.powtec.2016.08.050.
  • Yang, Y, and Y. F. Cheng. 2012. Parametric effects on the erosion–corrosion rate and mechanism of carbon steel pipes in oil sands slurry. Wear 276-277:141–8. 10.1016/j.wear.2011.12.010.
  • Yarrapareddy, E., and R. Kovacevic. 2008. Synthesis and characterization of laser-based direct metal deposited nano-particles reinforced surface coatings for industrial slurry erosion applications. Surface and Coatings Technology 202 (10):1951–65. doi: 10.1016/j.surfcoat.2007.08.032.
  • Zahedi, P., J. Zhang, H. Arabnejad, B. S. McLaury, and S. A. Shirazi. 2017. CFD simulation of multiphase flows and erosion predictions under annular flow and low liquid loading conditions. Wear 376–377:1260–70. doi: 10.1016/j.wear.2017.01.111.
  • Zenz, F. A. 1949. Two-phase fluid-solid flow. Industrial & Engineering Chemistry 41 (12):2801–6. doi: 10.1021/ie50480a032.
  • Zhang, J., B. S. McLaury, and S. A. Shirazi. 2018. Application and experimental validation of a CFD based erosion prediction procedure for jet impingement geometry. Wear 394–395:11–9. doi: 10.1016/j.wear.2017.10.001.
  • Zhu, H., and S. Li. 2018. Numerical analysis of mitigating elbow erosion with a rib. Powder Technology 330:445–60. doi: 10.1016/j.powtec.2018.02.046.
  • Zolfagharnasab, M. H., M. Salimi, H. Zolfagharnasab, H. Alimoradi, M. Shams, and C. Aghanajafi. 2021. A novel numerical investigation of erosion wear over various 90-degree elbow duct sections. Powder Technology 380:1–17. doi: 10.1016/j.powtec.2020.11.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.