53
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

A multiparametric study for size and stability of hybrid Fe2O3-NiO nanoparticles and their statistical transformation

, , , , , , & show all

References

  • Abbas, Z., F. Agada, A. H. Kamboh, A. M. Khan, U. Farooq, M. Bilal, M. Arshad, and A. J. Shaikh. 2022. A simplistic approach to evaluate the power conversion efficiencies for hybrid charge transport layers in open-air fabricated perovskite solar cells. Journal of Materials Research 37 (7):1323–40. doi: 10.1557/s43578-022-00537-x.
  • Abbasi, Z., W. Saeed, S. M. Shah, S. A. Shahzad, M. Bilal, A. F. Khan, and A. J. Shaikh. 2021. Binding efficiency of functional groups towards noble metal surfaces using graphene oxide – metal nanoparticle hybrids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 611:125858. doi: 10.1016/j.colsurfa.2020.125858.
  • Abdulwahab, K. O., M. A. Malik, P. O’Brien, G. A. Timco, F. Tuna, C. A. Muryn, R. E. P. Winpenny, R. A. D. Pattrick, V. S. Coker, and E. Arenholz. 2014. A one-pot synthesis of monodispersed iron cobalt oxide and iron manganese oxide nanoparticles from bimetallic pivalate clusters. Chemistry of Materials 26 (2):999–1013. doi: 10.1021/cm403047v.
  • Agada, F., Z. Abbas, K. Bakht, A. M. Khan, U. Farooq, M. Bilal, M. Arshad, A. F. Khan, A. H. Kamboh, and A. J. Shaikh. 2022. A step forward toward quantum dots based perovskite solar cells in an ambient environment. Optical Materials 129:112538. doi: 10.1016/j.optmat.2022.112538.
  • Ahmad, S., M. H. Ayoub, A. M. Khan, A. Waseem, M. Yasir, M. S. Khan, T. M. Bajwa, and A. J. Shaikh. 2022. Diverse comparative studies for preferential binding of graphene oxide and transition metal oxide nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 647:129057. doi: 10.1016/j.colsurfa.2022.129057.
  • Alagiri, M., S. Ponnusamy, and C. Muthamizhchelvan. 2012. Synthesis and characterization of NiO nanoparticles by sol–gel method. Journal of Materials Science: Materials in Electronics 23 (3):728–32. doi: 10.1007/s10854-011-0479-6.
  • Ali, S., M. H. Ayoub, F. Ahmad, S. Ahmad, Z. U. Hassan, A. Waseem, M. Yasir, U. Farooq, and A. J. Shaikh. 2024. Relation between fluorescence spectroscopy and dynamic light scattering revealed by interaction of transition metal sulfide nanoparticles and graphene oxide. Journal of Inorganic and Organometallic Polymers and Materials. doi: 10.1007/s10904-024-03002-w.
  • Amiri, M., K. Eskandari, and M. Salavati-Niasari. 2019. Magnetically retrievable ferrite nanoparticles in the catalysis application. Advances in Colloid and Interface Science 271:101982. doi: 10.1016/j.cis.2019.07.003.
  • Arya, S., P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, and S. K. Oruganti. 2021. influence of processing parameters to control morphology and optical properties of Sol-Gel synthesized ZnO nanoparticles. ECS Journal of Solid State Science and Technology 10 (2):23002. doi: 10.1149/2162-8777/abe095.
  • Ayoub, M. H., S. Ahmad, Z. U. Hassan, A. M. Khan, M. Bilal, A. Waseem, and A. J. Shaikh. 2023. Understanding non-covalent interactions of graphene oxide toward transition metal surfaces and relation of binding constants with titration end points from dynamic light scattering studies. Journal of Applied Physics 133 (2):25303. doi: 10.1063/5.0134267.
  • Bakht, K., A. Ishaq, A. M. Khan, R. A. Khan, M. Bilal, F. Rabbani, and A. J. Shaikh. 2023. Evaluation of binding compatibility among transition metal nanoparticles towards graphene quantum dots and their magnetic properties. Journal of Nanoparticle Research 25 (10):210. doi: 10.1007/s11051-023-05849-5.
  • Behnajady, M., H. Eskandarloo, N. Modirshahla, and M. Shokri. 2011. Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278 (1–3):10–7. doi: 10.1016/j.desal.2011.04.019.
  • Cao, Y., H. A. Dhahad, M. A. El-Shorbagy, H. Q. Alijani, M. Zakeri, A. Heydari, E. Bahonar, M. Slouf, M. Khatami, and M. Naderifar. 2021. Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Scientific Reports 11 (1):23479. doi: 10.1038/s41598-021-02937-1.
  • Chakradhary, V. K., A. Ansari, and M. J. Akhtar. 2019. Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. Journal of Magnetism and Magnetic Materials 469:674–80. doi: 10.1016/j.jmmm.2018.09.021.
  • Chopra, N., L. Claypoole, and L. G. Bachas. 2010. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures. Journal of Nanoparticle Research 12 (8):2883–93. doi: 10.1007/s11051-010-9879-4.
  • de Souza, F. C. d N., L. S. P. Maia, G. M. de Medeiros, M. A. R. Miranda, J. M. Sasaki, and G. F. Guimaraes. 2018. Optical current and magnetic field sensor using Mach-Zehnder interferometer with nanoparticles. IEEE Sensors Journal 18 (19):7998–8004. doi: 10.1109/JSEN.2018.2862393.
  • Dishwar, R. K., A. K. Mandal, and O. P. Sinha. 2019. Studies on highly fluxed iron ore pellets hardened at 1100 °C to 1200 °C. Metallurgical and Materials Transactions B 50 (2):617–21. doi: 10.1007/s11663-019-01506-2.
  • Fominykh, K., P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Döblinger, A. Müller, A. Pokharel, S. Böcklein, and C. Scheu. 2015. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano. 9 (5):5180–8. doi: 10.1021/acsnano.5b00520.
  • Goel, R., R. Jha, and C. Ravikant. 2020. Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles. Journal of Physics and Chemistry of Solids 144:109488. doi: 10.1016/j.jpcs.2020.109488.
  • Hassan, Z. U., Z. Abbas, K. Bakht, M. H. Ayoub, S. Ahmad, A. M. Khan, U. Farooq, M. S. Khan, and A. J. Shaikh. 2022. Dynamic light scattering and zeta-potential as a tool for understanding the mechanism of pesticides binding toward individual components of transition metal nanoparticles and graphene oxide hybrids. Journal of Environmental Science and Health, Part B 57 (12):932–47. doi: 10.1080/03601234.2022.2147348.
  • Hong, S. J., H. J. Mun, B. J. Kim, and Y. S. Kim. 2021. Characterization of Nickel oxide nanoparticles synthesized under low temperature. Micromachines 12 (10):1168. doi: 10.3390/mi12101168.
  • Hosseini, S. M. S., and M. S. Dehaj. 2022. The comparison of colloidal, optical, and solar collection characteristics between Fe2O3 and Fe3O4 nanofluids operated in an evacuated tubular volumetric absorption solar collector. Journal of the Taiwan Institute of Chemical Engineers 135:104381. doi: 10.1016/j.jtice.2022.104381.
  • Hussain, Z., A. Z. Abbasi, R. Ahmad, H. Bukhari, M. Shahzad, F. Sultan, and M. Ali. 2020. Vibrio cholerae dynamics in drinking water; mathematical and statistical analysis. Applied Nanoscience 10 (12):4519–22. doi: 10.1007/s13204-020-01292-3.
  • Iranmanesh, P., S. Tabatabai Yazdi, M. Mehran, and S. Saeednia. 2018. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values. Journal of Magnetism and Magnetic Materials 449:172–9. doi: 10.1016/j.jmmm.2017.10.040.
  • Jaji, N.-D., H. L. Lee, M. H. Hussin, H. M. Akil, M. R. Zakaria, and M. B. H. Othman. 2020. Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnology Reviews 9 (1):1456–80. doi: 10.1515/ntrev-2020-0109.
  • Jawad, M., S. Ali, A. Waseem, F. Rabbani, B. A. Z. Amin, M. Bilal, and A. J. Shaikh. 2019. Plasmonic effects and size relation of gold-platinum alloy nanoparticles. Advances in Nano Research 7 (3):169. doi: 10.12989/anr.2019.7.3.169.
  • Jawad, M., A. F. Khan, A. Waseem, A. H. Kamboh, M. Mohsin, S. A. Shahzad, S. H. Shah, S. Mathur, and A. J. Shaikh. 2019. Effect of gold nanoparticles on transmittance and conductance of graphene oxide thin films and efficiency of perovskite solar cells. Applied Nanoscience 10 (2):485–97. doi: 10.1007/s13204-019-01134-x.
  • Jaynes, E. T. 1990. Probability in quantum theory. Complexity, Entropy, and the Physics of Information 381–403. Reading, MA: Addison-Wesley.
  • Kamil, A. F., H. I. Abdullah, A. M. Rheima, and S. H. Mohammed. 2022. Impact of Fe2NiO4 nanoparticles to increase efficiency of dye-sensitized solar cells. Materials Today: Proceedings 49:2727–32. doi: 10.1016/j.matpr.2021.09.253.
  • Karaagac, O., S. Atmaca, and H. Kockar. 2017. A facile method to synthesize nickel ferrite nanoparticles: Parameter effect. Journal of Superconductivity and Novel Magnetism 30 (8):2359–69. doi: 10.1007/s10948-016-3796-4.
  • Khan, K., A. J. Shaikh, M. Siddiq, T. A. Sherazi, and M. Nawaz. 2016. In situ formation of copper nanoparticles in a p(NIPAM-VAA-AAm) terpolymer microgel that retains the swelling behavior of microgels. Journal of Polymer Engineering 36 (3):287–92. doi: 10.1515/polyeng-2015-0169.
  • Kumar, V., V. Vg, and A. P. Mohan. 2021. Synthesis and characterisation of nickel-iron bimetallic oxide nanoparticles via microwave irradiation technique. doi: 10.56042/ijca.v60i7.40723.
  • Lafta, S. H. 2017. Effect of pH on structural, magnetic and FMR properties of hydrothermally prepared nano Ni ferrite. Open Chemistry 15 (1):53–60. doi: 10.1515/chem-2017-0007.
  • Lakshminarayanan, S., M. F. Shereen, K. Niraimathi, P. Brindha, and A. Arumugam. 2021. One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific Reports 11 (1):17707. doi: 10.1038/s41598-021-87960-y.
  • Lassoued, A., B. Dkhil, A. Gadri, and S. Ammar. 2017. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics 7:3007–15. doi: 10.1016/j.rinp.2017.07.066.
  • Lazarević, Z., Č. Jovalekić, A. Milutinović, M. Romčević, and N. Romčević. 2012. Preparation and characterization of nano ferrites. Acta Physica Polonica A 121 (3):682–6. doi: 10.12693/APhysPolA.121.682.
  • Man’ko, O. V., and V. I. Man’ko. 2021. Probability representation of quantum states. Entropy 23 (5):549. doi: 10.3390/e23050549.
  • Miller, J. A., R. Sivaramakrishnan, Y. Tao, C. F. Goldsmith, M. P. Burke, A. W. Jasper, N. Hansen, N. J. Labbe, P. Glarborg, and J. Zádor. 2021. Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models. Progress in Energy and Combustion Science 83:100886. doi: 10.1016/j.pecs.2020.100886.
  • Mirzaei, A., K. Janghorban, B. Hashemi, S. R. Hosseini, M. Bonyani S. G. Leonardi, A. Bonavita, and G. Neri. 2016. Synthesis and characterization of mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films. Processing and Application of Ceramics 10 (4):209–17. doi: 10.2298/PAC1604209M.
  • Mizuno, S., and H. Yao. 2021. On the electronic transitions of α-Fe2O3 hematite nanoparticles with different size and morphology: Analysis by simultaneous deconvolution of UV–vis absorption and MCD spectra. Journal of Magnetism and Magnetic Materials 517:167389. doi: 10.1016/j.jmmm.2020.167389.
  • Mohsin, M., M. Jawad, M. A. Yameen, A. Waseem, S. H. Shah, and A. J. Shaikh. 2020. An insight into the coating behavior of bimetallic silver and gold core-shell nanoparticles. Plasmonics 15 (6):1599–612. doi: 10.1007/s11468-020-01166-y.
  • Muralidharan, G., L. Subramanian, S. K. Nallamuthu, V. Santhanam, and S. Kumar. 2011. Effect of reagent addition rate and temperature on synthesis of gold nanoparticles in microemulsion route. Industrial & Engineering Chemistry Research 50 (14):8786–91. doi: 10.1021/ie2002507.
  • Narang, S. B., and K. Pubby. 2021. Nickel spinel ferrites: A review. Journal of Magnetism and Magnetic Materials 519:167163. doi: 10.1016/j.jmmm.2020.167163.
  • Patterson, A. 1939. The Scherrer formula for X-ray particle size determination. Physical Review 56 (10):978–82. doi: 10.1103/PhysRev.56.978.
  • Paulson, N. H., E. Jennings, and M. Stan. 2019. Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials. International Journal of Engineering Science 142:74–93. doi: 10.1016/j.ijengsci.2019.05.011.
  • Rai, R., S. Alwani, and I. Badea. 2019. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers 11 (4):745. doi: 10.3390/polym11040745.
  • Rana, G., P. Dhiman, A. Kumar, D.-V N. Vo, G. Sharma, S. Sharma, and M. Naushad. 2021. Recent advances on nickel nano-ferrite: A review on processing techniques, properties and diverse applications. Chemical Engineering Research and Design 175:182–208. doi: 10.1016/j.cherd.2021.08.040.
  • Rodrigues, T. S., A. G. da Silva, and P. H. Camargo. 2019. Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A 7 (11):5857–74. doi: 10.1039/C9TA00074G.
  • Saeed, W., Z. Abbasi, M. Bilal, S. H. Shah, A. Waseem, and A. J. Shaikh. 2023. Interactive behavior of graphene quantum dots towards noble metal surfaces. Physica E: Low-Dimensional Systems and Nanostructures 147:115596. doi: 10.1016/j.physe.2022.115596.
  • Saeed, W., Z. Abbasi, S. Majeed, S. A. Shahzad, A. F. Khan, and A. J. Shaikh. 2021. An insight into the binding behavior of graphene oxide and noble metal nanoparticles. Journal of Applied Physics 129 (12):125302. doi: 10.1063/5.0041894.
  • Saleem, A., F. Agada, M. H. Ayoub, A. M. Khan, R. Sarwar, S. M. Bukhari, A. Zaidi, U. Farooq, and A. J. Shaikh. 2023. The synergistic effect of electron lone pairs and aromaticity on the binding affinity towards metal surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 664:131127. doi: 10.1016/j.colsurfa.2023.131127.
  • Salopek, B., D. Krasic, and S. Filipovic. 1992. Measurement and application of zeta-potential. Rudarsko-Geolosko-Naftni Zbornik 4 (1):147. doi: 10.1007/978-1-60327-198-1_6.
  • Schmahl, N., J. Barthel, and G. Eikerling. 1964. Röntgenographische Untersuchungen an den Systemen MgO— CuO und NiO— CuO. Zeitschrift Für Anorganische Und Allgemeine Chemie 332 (5–6):230–7. doi: 10.1002/zaac.19643320503.
  • Shaikh, A. J. 2016. Exploring the direction of charge transfer in porphyrin—PbSe quantum dot hybrids. ChemistrySelect 1 (8):1678–86. doi: 10.1002/slct.201600180.
  • Shaikh, A. J., N. Aman, and M. A. Yameen. 2019. A new methodology for simultaneous comparison and optimization between nanoparticles and their drug conjugates against various multidrug-resistant bacterial strains. Asian Biomedicine 13 (4):149–62. doi: 10.1515/abm-2019-0054.
  • Shaikh, A. J., M. Batool, M. A. Yameen, and A. Waseem. 2018. Plasmonic effects, size and biological activity relationship of Au-Ag Alloy nanoparticles. Journal of Nano Research 54:98–111. doi: 10.4028/www.scientific.net/JNanoR.54.98.
  • Shaikh, A. J., F. Rabbani, T. A. Sherazi, Z. Iqbal, S. Mir, and S. A. Shahzad. 2015. Binding strength of porphyrin-gold nanoparticle hybrids based on number and type of linker moieties and a simple method to calculate inner filter effects of gold nanoparticles using fluorescence spectroscopy. The Journal of Physical Chemistry. A 119 (7):1108–16. doi: 10.1021/jp510924n.
  • Sharma, G., A. Kumar, S. Sharma, M. Naushad, R. P. Dwivedi, Z. A. ALOthman, and G. T. Mola. 2019. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University - Science 31 (2):257–69. doi: 10.1016/j.jksus.2017.06.012.
  • Shirsath, S. E., X. Liu, M. H. N. Assadi, A. Younis, Y. Yasukawa, S. K. Karan, J. Zhang, J. Kim, D. Wang, and A. Morisako. 2019. Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe(2)O(4) thin films. Nanoscale Horizons 4 (2):434–44. doi: 10.1039/C8NH00278A.
  • Silva, M. M. S., R. A. Raimundo, T. R. Silva, A. J. M. Araújo, D. A. Macedo, M. A. Morales, C. P. Souza, A. G. Santos, and A. L. Lopes-Moriyama. 2023. Morphology-controlled NiFe2O4 nanostructures: Influence of calcination temperature on structural, magnetic and catalytic properties towards OER. Journal of Electroanalytical Chemistry 933:117277. doi: 10.1016/j.jelechem.2023.117277.
  • Singh, A., A. Kumari, and A. Sinha. 2020. Characterization of Fe2NiO4nanoparticles doped PDLC for applications in display technology. Paper presented at the 2020 5th IEEE International Conference on Emerging Electronics (ICEE).
  • Sivakumar, S., D. Anusuya, C. P. Khatiwada, J. Sivasubramanian, A. Venkatesan, and P. Soundhirarajan. 2014. Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 128:69–75. doi: 10.1016/j.saa.2014.02.136.
  • Stankic, S., S. Suman, F. Haque, and J. Vidic. 2016. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology 14 (1):73. doi: 10.1186/s12951-016-0225-6.
  • Taffa, D. H., I. Hamm, C. Dunkel, I. Sinev, D. Bahnemann, and M. Wark. 2015. Electrochemical deposition of Fe 2 O 3 in the presence of organic additives: A route to enhanced photoactivity. RSC Advances 5 (125):103512–22. doi: 10.1039/C5RA21290A.
  • Turkten, N., and M. Bekbolet. 2020. Photocatalytic performance of titanium dioxide and zinc oxide binary system on degradation of Humic matter. Journal of Photochemistry and Photobiology A: Chemistry 401:112748. doi: 10.1016/j.jphotochem.2020.112748.
  • Wang, J., F. Ren, R. Yi, A. Yan, G. Qiu, and X. Liu. 2009. Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. Journal of Alloys and Compounds 479 (1–2):791–6. doi: 10.1016/j.jallcom.2009.01.059.
  • Yang, J., Z. Ao, X. Niu, J. Dong, S. Wang, and H. Wu. 2021. Facile one-step synthesis of 3D honeycomb-like porous chitosan bead inlaid with MnFe bimetallic oxide nanoparticles for enhanced degradation of dye pollutant. International Journal of Biological Macromolecules 186:829–38. doi: 10.1016/j.ijbiomac.2021.07.090.
  • Yazirin, C., P. Puspitasari, M. I. N. Sasongko, D. I. Tsamroh, and P. Risdanareni. 2017. Phase identification and morphology study of hematite (Fe2O3) with sintering time varitions. Paper presented at the AIP Conference Proceedings.
  • Zhang, H., B. Chen, and J. F. Banfield. 2010. Particle size and pH effects on nanoparticle dissolution. The Journal of Physical Chemistry C 114 (35):14876–84. doi: 10.1021/jp1060842.
  • Zhang, Z., S. Basu, P. Zhu, H. Zhang, A. Shao, N. Koratkar, and Z. Yang. 2019. Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries. Carbon 142:32–9. doi: 10.1016/j.carbon.2018.10.035.
  • Zhou, D., S. W., Bennett, R. Mielke, and A. A. Keller. 2012. Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration. PloS ONE 7 (11):e37363. doi: 10.1371/journal.pone.0037363.
  • Zhu, X., J. Zhang, J. Liu, and Y. Zhang. 2019. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Advanced Science 6 (22):1901358. doi: 10.1002/advs.201901358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.