136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MFiX-TFM simulation of hydrodynamics of a dual fluidized bed system

, &

References

  • Aigner, I., P. Christoph, and H. Hofbauer. 2011. Co-gasification of coal and wood in a dual fluidized bed gasifier. Fuel 90 (7):2404–12. doi:10.1016/j.fuel.2011.03.024.
  • Altinsoy, Y., K. Ahmet, and H. Topal. 2021. Determination of the bed hydrodynamics by MFIX-PIC in the biomass gasification process of circulating fluidized bed. Gazi University Journal of Science Part A 8 (4):551–69. doi:10.54287/gujsa.1030632.
  • Arastoopour, H., P. Pakdel, and M. Adewumi. 1990. Hydrodynamic analysis of dilute gas-solids flow in a vertical pipe. Powder Technology 62 (2):163–70. doi:10.1016/0032-5910(90)80080-I.
  • Bakshi, A., C. Altantzis, R. B. Bates, and A. F. Ghoniem. 2016. Study of the effect of reactor scale on fluidization hydrodynamics using fine-grid CFD simulations based on the two-fluid model. Powder Technology 299:185–98. doi:10.1016/j.powtec.2016.05.029.
  • Basu, P. 2006. Combustion and gasification in fluidized beds. Combustion and Gasification in Fluidized Beds. Boca Raton: CRC Press. doi:10.1201/9781420005158.
  • Benedikt, F., J. Fuchs, J. C. Schmid, S. Müller, and H. Hofbauer. 2017. Advanced dual fluidized bed steam gasification of wood and lignite with calcite as bed material. Korean Journal of Chemical Engineering 34 (9):2548–58. doi:10.1007/s11814-017-0141-y.
  • Benyahia, S., M. Syamlal, and T. J. O’Brien. 2006. Extension of Hill-Koch-Ladd drag correlation over all ranges of reynolds number and solids volume fraction. Powder Technology 162 (2):166–74. doi:10.1016/j.powtec.2005.12.014.
  • Chalermsinsuwan, B., G. Dimitri, and P. Piumsomboon. 2011. Two- and three-dimensional CFD modeling of Geldart a particles in a thin bubbling fluidized bed: Comparison of turbulence and dispersion coefficients. Chemical Engineering Journal 171 (1):301–13. doi:10.1016/j.cej.2011.04.007.
  • Chauhan, V., P. D. Chavan, D. Sudipta, S. Sujan, S. Gajanan, and N. D. Dhaigude. 2022. A transient eulerian-eulerian simulation of bubbling regime hydrodynamics of coal ash particles in fluidized bed using different drag models. Advanced Powder Technology 33 (1):103385. doi:10.1016/j.apt.2021.12.004.
  • Cloete, S., Z. Abdelghafour, J. Stein Tore, A. Martin van Sint, G. Fausto, and S. Amini. 2013. The generality of the standard 2D TFM approach in predicting bubbling fluidized bed hydrodynamics. Powder Technology 235:735–46. doi:10.1016/j.powtec.2012.11.041.
  • Das, H. J., M. Pinakeswar, and R. Saikia. 2020. Characterization of sand particles in a bubbling fluidized bed with diverging riser. International Communications in Heat and Mass Transfer 119:104953. doi:10.1016/j.icheatmasstransfer.2020.104953.
  • Ding, J., and D. Gidaspow. 1990. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal 36 (4):523–38. doi:10.1002/aic.690360404.
  • Eppala, V. C. R., V. Mona Mary, and V. Teja Reddy. 2023. Effect of particle shape on the hydrodynamics of gas-solid fluidized bed. Chemical Engineering Research and Design 189:461–73. doi:10.1016/j.cherd.2022.11.025.
  • Ergun, S. 1952. Fluid flow through packed columns. Chemical Engineering Progress 48 (2):89.
  • Gao, X., L. Tingwen, W. A. Rogers, S. Kristin, G. Katherine, W. Gavin, and J. E. Parks. 2020. Validation and application of a multiphase CFD model for hydrodynamics, temperature field and RTD simulation in a pilot-scale biomass pyrolysis vapor phase upgrading reactor. Chemical Engineering Journal 388:124279. doi:10.1016/j.cej.2020.124279.
  • Gidaspaw, D. 1994. Multiphase flow and fluidization: Continuum and kinetic theory descriptions. San Diego: Academic Press.
  • Grace, J. R. 1982. Fluidized bed hydrodynamics. Handbook of multiphase systems. Washington: Hemisphere Publishing Corporation
  • Guenther, C., and M. Syamlal. 2001. The effect of numerical diffusion on simulation of isolated bubbles in a gas-solid fluidized bed. Powder Technology 116 (2-3):142–54. doi:10.1016/S0032-5910(00)00386-7.
  • Hanchate, N., R. Malhotra, and C. S. Mathpati. 2021. Design of experiments and analysis of dual fluidized bed gasifier for syngas production: Cold flow studies. International Journal of Hydrogen Energy 46 (6):4776–87. doi:10.1016/j.ijhydene.2020.02.114.
  • He, J., K. Göransson, U. Söderlind, and W. Zhang. 2012. Simulation of biomass gasification in a dual fluidized bed gasifier. Biomass Conversion and Biorefinery 2 (1):1–10. doi:10.1007/s13399-011-0030-2.
  • Howaniec, N., and A. Smoliński. 2014. Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel 128:442–50. doi:10.1016/j.fuel.2014.03.036.
  • Jin, H., W. Yin, S. Wang, and L. Wang. 2023. Influence of bed material on biomass gasification in fluidized beds via a TFM-DEM hybrid model. International Journal of Hydrogen Energy 49:217–24. doi:10.1016/j.ijhydene.2023.07.235.
  • Johnson, P. C., and R. Jackson. 1987. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics 176 (1):67–93. doi:10.1017/S0022112087000570.
  • Kern, S., C. Pfeifer, and H. Hofbauer. 2013. Gasification of wood in a dual fluidized bed gasifier: Influence of fuel feeding on process performance. Chemical Engineering Science 90:284–98. doi:10.1016/j.ces.2012.12.044.
  • Kraft, S., F. Kirnbauer, and H. Hofbauer. 2017. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW Fuel input. Applied Energy 190 (2017):408–20. doi:10.1016/j.apenergy.2016.12.113.
  • Li, T., J. F. Dietiker, and M. Shahnam. 2012. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed. Chemical Engineering Science 84:746–60. doi:10.1016/j.ces.2012.09.024.
  • Li, T., A. Gel, S. Pannala, M. Shahnam, and M. Syamlal. 2014. CFD simulations of circulating fluidized bed risers, Part I: Grid study. Powder Technology 254:170–80. doi:10.1016/j.powtec.2014.01.021.
  • Li, T., J. Grace, and X. Bi. 2010. Study of wall boundary condition in numerical simulations of bubbling fluidized beds. Powder Technology 203 (3):447–57. doi:10.1016/j.powtec.2010.06.005.
  • Li, T., and C. Guenther. 2012. MFIX-DEM simulations of change of volumetric flow in fluidized beds due to chemical reactions. Powder Technology 220:70–8. doi:10.1016/j.powtec.2011.09.025.
  • Li, T., W. A. Rogers, M. Syamlal, J. F. Dietiker, J. Musser, M. Shahnam, and S. Rabha. 2017. The NETL MFiX suite of multiphase flow models: A brief review and recent applications of MFiX-TFM to Fossil Energy Technologies. Chemical Engineering Science 169:259–72. doi:10.1016/j.ces.2016.07.043.
  • Loha, C., H. Chattopadhyay, and P. K. Chatterjee. 2012. Assessment of drag models in simulating bubbling fluidized bed hydrodynamics. Chemical Engineering Science 75:400–7. doi:10.1016/j.ces.2012.03.044.
  • Lu, Y., Y. Zhou, L. Yang, X. Hu, X. Luo, and H. Chen. 2018. Verification of optimal models for 2D-full loop simulation of circulating fluidized bed. Advanced Powder Technology 29 (11):2765–74. doi:10.1016/j.apt.2018.07.024.
  • Lun, C. K. K., S. B. Savage, D. J. Jeffrey, and N. Chepurniy. 1984. Kinetic theories for granular flow: Inelastic particles in couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics 140:223–56. doi:10.1017/S0022112084000586.
  • Owoyemi, O., L. Mazzei, and P. Lettieri. 2007. CFD modeling of binary-fluidized suspensions and investigation of role of particle–Particle drag on mixing and segregation. AIChE Journal 53 (8):1924–40. doi:10.1002/aic.11227.
  • Pain, C. C., S. Mansoorzadeh, and C. R. E. De Oliveira. 2001. Study of bubbling and slugging fluidized beds using the two-fluid granular temperature model. International Journal of Multiphase Flow 27 (3):527–51. doi:10.1016/S0301-9322(00)00035-5.
  • Pfeifer, C., S. Koppatz, and H. Hofbauer. 2011. Steam gasification of various feedstocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials. Biomass Conversion and Biorefinery 1 (1):39–53. doi:10.1007/s13399-011-0007-1.
  • Ramírez, J. J., J. D. Martínez, and S. L. Petro. 2007. Basic design of a fluidized bed gasifier for rice husk on a pilot scale. Latin American Applied Research 37 (4):299–306.
  • Schaeffer, D. G. 1987. Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations 66 (1):19–50. doi:10.1016/0022-0396(87)90038-6.
  • Schmid, J. C., T. Pröll, H. Kitzler, C. Pfeifer, and H. Hofbauer. 2012. Cold flow model investigations of the countercurrent flow of a dual circulating fluidized bed gasifier. Biomass Conversion and Biorefinery 2 (3):229–44. doi:10.1007/s13399-012-0035-5.
  • Soanuch, C., K. Korkerd, P. Piumsomboon, and B. Chalermsinsuwan. 2020. Minimum fluidization velocities of binary and ternary biomass mixtures with silica sand. Energy Reports 6:67–72. doi:10.1016/j.egyr.2020.08.026.
  • Souza Braun, M. P. de, A. T. Mineto, H. A. Navarro, L. Cabezas-Gómez, and R. C. da Silva. 2010. The effect of numerical diffusion and the influence of computational grid over gas-solid two-phase flow in a bubbling fluidized bed. Mathematical and Computer Modelling 52 (9-10):1390–402. doi:10.1016/j.mcm.2010.05.017.
  • Stanly, R., G. Shoev, and K. A. A. 2017. Numerical simulation of gas-solid flows in fluidized bed with TFM Model. In High-Energy Processes in Condensed Matter (HEPCM 2017). Vol. 1893. AIP Publishing. doi:10.1063/1.5007498.
  • Syamlal, M., and T. J. O’Brien. 1987. The derivation of a drag coefficient formula from velocity-voidage correlations. Unpublished. Morgantown, WV. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=af7220e46d69a6f4d3064d8cee0b0d8b6641ec9d.
  • Vaidheeswaran, A., A. Gel, M. A. Clarke, and W. A. Rogers. 2021. Assessment of model parameters in MFiX particle-in-cell approach. Advanced Powder Technology 32 (8):2962–77. doi:10.1016/j.apt.2021.06.011.
  • Wang, S., K. Luo, and J. Fan. 2020. CFD-DEM coupled with thermochemical sub-models for biomass gasification: Validation and sensitivity analysis. Chemical Engineering Science 217:115550. doi:10.1016/j.ces.2020.115550.
  • Wilk, V., H. Kitzler, S. Koppatz, C. Pfeifer, and H. Hofbauer. 2011. Gasification of waste wood and bark in a dual fluidized bed steam gasifier. Biomass Conversion and Biorefinery 1 (2):91–7. doi:10.1007/s13399-011-0009-z.
  • Xie, L., J. Zhu, and C. Jiang. 2021. Quantitative study of mixing/segregation behaviors of binary-mixture particles in pilot-scale fluidized bed reactor. Powder Technology 377:103–14. doi:10.1016/j.powtec.2020.08.069.
  • Xie, N., F. Battaglia, and S. Pannala. 2008. Effects of using two- versus three-dimensional computational modeling of fluidized beds. Part I, hydrodynamics. Powder Technology 182 (1):1–13. doi:10.1016/j.powtec.2007.07.005.
  • Xu, G., T. Murakami, T. Suda, Y. Matsuzaw, and H. Tani. 2009. Two-stage dual fluidized bed gasification: Its conception and application to biomass. Fuel Processing Technology 90 (1):137–44. doi:10.1016/j.fuproc.2008.08.007.
  • Yang, S., S. Wang, and H. Wang. 2020. Numerical study of biomass gasification in a 0.3 MWth full-loop circulating fluidized bed gasifier. Energy Conversion and Management 223:113439. doi:10.1016/j.enconman.2020.113439.
  • Yu, Y., Y. Li, X. Chen, F. Duan, and Q. Zhou. 2021. Improvement of the coarse-grained discrete element method for frictional particles. Industrial & Engineering Chemistry Research 60 (15):5651–64. doi:10.1021/acs.iecr.0c06340.
  • Zhong, H., X. Lan, J. Gao, and C. Xu. 2014. Effect of particle frictional sliding during collisions on modeling the hydrodynamics of binary particle mixtures in bubbling fluidized beds. Powder Technology 254:36–43. doi:10.1016/j.powtec.2014.01.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.