0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Application prospect of synchrotron radiation SAXS in time-resolved study of dust explosion

, , , , , , , , , , & show all

References

  • Abbasi, T., and S. A. Abbasi. 2007. Dust explosions–Cases, causes, consequences, and control. Journal of Hazardous Materials 140 (1-2):7–44. doi: 10.1016/j.jhazmat.2006.11.007.
  • Amyotte, P. R. 2014. Some myths and realities about dust explosions. Process Safety and Environmental Protection 92 (4):292–9. doi: 10.1016/j.psep.2014.02.013.
  • Balantič, J., D. A. S. Balantič, and B. Novosel. 2019. Investigation of the explosion-related parameters and their influence on the severity of an explosion involving aluminum dust. Process Safety and Environmental Protection 38: E12047.
  • Becker, J., M. W. Tate, K. S. Shanks, H. T. Philipp, J. T. Weiss, P. Purohit, D. Chamberlain, J. P. C. Ruff, and S. M. Gruner. 2016. Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science. Journal of Instrumentation 11 (12):P12013–P12013. doi: 10.1088/1748-0221/11/12/P12013.
  • Bind, V. K., S. Roy, and C. Rajagopal. 2012. A reaction engineering approach to modeling dust explosions. Chemical Engineering Journal 207–208:625–34. doi: 10.1016/j.cej.2012.07.026.
  • Boeck, L. R., C. R. L. Bauwens, and S. B. Dorofeev. 2023. Large-scale dust explosions in vessel-pipe systems. Journal of Loss Prevention in the Process Industries 82:104980. doi: 10.1016/j.jlp.2023.104980.
  • Bolze, J., B. Peng, N. Dingenouts, P. Panine, T. Narayanan, and M. Ballauff. 2002. Formation and growth of amorphous colloidal CaCO3 precursor particles as detected by time-resolved SAXS. Langmuir 18 (22):8364–9. doi: 10.1021/la025918d.
  • Chatrathi, K. 1994. Dust and hybrid explosibility in a 1 m3 spherical chamber. Process Safety Progress 13 (4):183–9. doi: 10.1002/prs.680130403.
  • Chawla, N., P. R. Amyotte, and M. J. Pegg. 1996. A comparison of experimental methods to determine the minimum explosible concentration of dusts. Fuel 75 (6):654–8. doi: 10.1016/0016-2361(96)00006-3.
  • Eckhoff, R. K. 2013. Influence of dispersibility and coagulation on the dust explosion risk presented by powders consisting of nm-particles. Powder Technology 239:223–30. doi: 10.1016/j.powtec.2013.02.007.
  • Eckhoff, R. K., and G. Li. 2021. Industrial dust explosions. A brief review. Applied Sciences 11 (4):1669. doi: 10.3390/app11041669.
  • Fang, L., S. Seifert, R. Winans, and T. Li. 2022. Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS. Small (Weinheim an Der Bergstrasse, Germany) 18 (19):e2106017. doi: 10.1002/smll.202106017.
  • Glatter, O., and O. Kratky. 1982. Small angle X-ray scattering. New York: Academic Press.
  • Gräwert, T. W., and DI. Svergun. 2020. Structural modeling using solution small-angle X-ray scattering (SAXS). Journal of Molecular Biology 432 (9):3078–92. doi: 10.1016/j.jmb.2020.01.030.
  • Grégoire, Y., E. Leprette, and C. Proust. 2021. Flameless venting of dust explosion: Testing and modeling. Journal of Loss Prevention in the Process Industries 73:104596. doi: 10.1016/j.jlp.2021.104596.
  • Hettiarachchi, G. M., E. Donner, and E. Doelsch. 2017. Application of synchrotron radiation-based methods for environmental biogeochemistry: introduction to the special section. Journal of Environmental Quality 46 (6):1139–45. doi: 10.2134/jeq2017.09.0349.
  • Inoue, K., T. Oka, T. Suzuki, N. Yagi, K. Takeshita, S. Goto, and T. Ishikawa. 2001. Present status of high flux beamline (BL40XU) at SPring-8. Nuclear Instruments and Methods in Physics Research Section A 467-468:674–7. doi: 10.1016/S0168-9002(01)00443-0.
  • Islas, A., A. R. Fernández, C. Betegón, E. Martínez-Pañeda, and A. Pandal. 2022. Computational assessment of biomass dust explosions in the 20L sphere. Process Safety and Environmental Protection 165:791–814. doi: 10.1016/j.psep.2022.07.029.
  • Islas, A., A. R. Fernández, C. Betegón, E. Martínez-Pañeda, and A. Pandal. 2023. Biomass dust explosions: CFD simulations and venting experiments in a 1 m3 silo. Process Safety and Environmental Protection 176:1048–62. doi: 10.1016/j.psep.2023.06.074.
  • Iwuozor, K. O., T. Ojeyemi, E. C. Emenike, C. T. Umeh, A. Egbemhenghe, B. D. Ayoku, T. I. Ogunsanya, S. Ogunniyi, J. O. Ighalo, and A. G. Adeniyi. 2024. Management of sugar dust in the sugar industry. Heliyon 10 (1):e23158. doi: 10.1016/j.heliyon.2023.e23158.
  • Jeng, U., C. H. Hsu, Y. S. Sun, Y. H. Lai, W. T. Chung, H. S. Sheu, H. Y. Lee, Y. F. Song, K. S. Liang, and T. L. Lin. 2005. Recent SAXS progress at NSRRC. Macromolecular Research 13 (6):506–13. doi: 10.1007/BF03218488.
  • Jiang, B. Y., Q. Yao, M. Q. Su, J. J. Li, K. L. Lu, D. W. Ding, and H. Hong. 2024. Study on the suppression characteristics and mechanism of ABC powder on pulverized coal explosion based on the analysis of thermal decomposition characteristics and reaction kinetics. Process Safety and Environmental Protection 181:143–55. doi: 10.1016/j.psep.2023.11.022.
  • Kauffman, C. W., M. Sichel, and P. Wolanski. 1992. Research on dust explosions at the University of Michigan. Powder Technology 71 (2):119–34. doi: 10.1016/0032-5910(92)80002-E.
  • Khan, A. M., S. K. Ray, N. K. Mohalik, D. Mishra, S. Mandal, and J. K. Pandey. 2022. Experimental and CFD simulation techniques for coal dust explosibility: A review. Mining, Metallurgy & Exploration 39 (4):1445–63. doi: 10.1007/s42461-022-00631-y.
  • Konishi, T., K. Taguchi, K. Fukao, N. Takagi, and Y. Miyamoto. 2023. Crystallization with nodular aggregation near the glass transition temperature for syndiotactic polypropylene. ACS Macro Letters 12 (2):208–14. doi: 10.1021/acsmacrolett.2c00666.
  • Li, G., J. Hu, and S. Chen. 2023. A review of dust control/removal methods in metal mines in China. Powder Technology 430:119035. doi: 10.1016/j.powtec.2023.119035.
  • Lin, S. Y., T. H. Lin, Y. C. Cheng, K. H. Hsueh, and C. M. Shu. 2016. Assessment of dust explosion with adipic acid and p-terephthalic acid in the powdered resin process. Journal of Loss Prevention in the Process Industries 43:92–7. doi: 10.1016/j.jlp.2016.05.003.
  • Lu, K. T., Y. C. Chu, T. C. Chen, and K. H. Hu. 2010. Investigation of the decomposition reaction and dust explosion characteristics of crystalline dicumyl peroxide. Process Safety and Environmental Protection 88 (5):356–65. doi: 10.1016/j.psep.2010.06.003.
  • Lu, K. L., B. Y. Jiang, Y. Xiao, Z. M. Luo, X. K. Chen, B. Su, Y. Zhao, and Y. Y. Wang. 2024. Experimental investigation on the suppression of aluminum dust explosion by sodium carbonate powder. Process Safety and Environmental Protection 183:568–79. doi: 10.1016/j.psep.2024.01.034.
  • Margaritondo, G. 2001. The essential features of synchrotron radiation: An elementary approach. Journal of Alloys and Compounds 328 (1–2):35–41. doi: 10.1016/S0925-8388(01)01327-5.
  • Mohammed, K., K. O. Iwuozor, V. U. Anyanwu, and B. O. Olaniy. 2023. Sugar dust explosion in the sugar industry: Case studies and prevention strategies. Sugar Tech 26:12–9. doi: 10.1007/s12355-023-01307-7.
  • Mu, J., Q. F. Bao, S. H. Wang, H. Liu, X. Y. Xiong, X. S. Li, J. M. Zhu, H. S. Xu, and B. Jia. 2022. Study on the characteristics and influencing factors of micron/nano carbon material dust explosions. Journal of Loss Prevention in the Process Industries 77:104757. doi: 10.1016/j.jlp.2022.104757.
  • Nifuku, M., and H. Katoh. 2003. A study on the static electrification of powders during pneumatic transportation and the ignition of dust cloud. Powder Technology 135-136:234–42. doi: 10.1016/S0032-5910(03)00163-3.
  • Pang, L., J. J. Cao, R. Ma, Y. Zhao, and K. Yang. 2021. Risk assessment method of polyethylene dust explosion based on explosion parameters. Journal of Loss Prevention in the Process Industries 69:104397. doi: 10.1016/j.jlp.2021.104397.
  • Prakash, E., and V. Babu. 2010. Design of hazardous pharmaceutical waste disposal system. Injury Prevention 16 (Suppl 1):A203–A203. doi: 10.1136/ip.2010.029215.724.
  • Qian, J. F., Z. T. Liu, S. Lin, X. L. Li, and A. Muhammad. 2020. Study on microstructure characteristics of material evidence in coal dust explosion and its significance in accident investigation. Fuel 265:116992. doi: 10.1016/j.fuel.2019.116992.
  • Rice, G. S. 1912. Description of the explosion test at the experimental mine of the United States Bureau of Mines. Journal of Industrial & Engineering Chemistry 4 (7):488–90. doi: 10.1021/ie50043a005.
  • Song, N., T. Y. Luo, Y. Yu, Y. F. Suo, Z. W. Chen, T. T. Chen, Q. W. Zhan, J. C. Jiang, and G. M. Zhu. 2021. Investigation on suppression of melamine polyphosphate on acrylonitrile-butadiene-styrene dust explosion. Process Safety Progress 40 (4):345–54. doi: 10.1002/prs.12265.
  • Thomlinson, W. 1983. Research using synchrotron radiation at the national synchrotron light source. IEEE Transactions on Nuclear Science 30 (2):1030–3. doi: 10.1109/TNS.1983.4332444.
  • Thompson, R. F., M. Walker, C. A. Siebert, S. P. Muench, and N. A. Ranson. 2016. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods (San Diego, Calif.) 100 (3-15):3–15. doi: 10.1016/j.ymeth.2016.02.017.
  • Vogl, A. 1996. Flame propagation in pipes of pneumatic conveying systems and exhaust equipment. Process Safety Progress 15 (4):219–26. doi: 10.1002/prs.680150408.
  • Wang, Z. H., Y. F. Cheng, T. Mogi, and R. Dobashi. 2022. Flame structures and particle-combustion mechanisms in nano and micron titanium dust explosions. Journal of Loss Prevention in the Process Industries 80:104876. doi: 10.1016/j.jlp.2022.104876.
  • Wei, Q. X., Y. S. Zhang, K. Chen, B. Liu, X. B. Meng, X. Y. Zhang, H. Y. Chen, and J. S. Chen. 2021. Preparation and performance of novel APP/NaY–Fe suppressant for coal dust explosion. Journal of Loss Prevention in the Process Industries 69:104374. doi: 10.1016/j.jlp.2020.104374.
  • Williams, G. P. 1982. A general review of synchrotron radiation, its uses and special technologies. Vacuum 32 (6):333–45. doi: 10.1016/0042-207X(82)93826-X.
  • Wu, H. J., W. M. Li, Y. F. Sun, Z. B. Zhang, Q. F. Qin, Q. F. Han, S. J. Wei, Z. H. Li, Y. X. Zhao, and X. Cao. 2024. Preliminary development of a dust explosion equipment for time-resolved SAXS experiment with synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 549:165265. doi: 10.1016/j.nimb.2024.165265.
  • Xiong, X. Y., K. Gao, C. Q. Ji, J. Mu, B. Li, D. Zhang, Y. D. Xu, and L. F. Xie. 2024. Study on the characteristics parameters of magnesium dust explosion suppression by various inert gases. Journal of Loss Prevention in the Process Industries 87:105242. doi: 10.1016/j.jlp.2023.105242.
  • Yu, M. G., X. Y. Wang, K. Zheng, S. X. Han, C. D. Chen, R. J. Si, and L. Wang. 2020. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor. Process Safety and Environmental Protection 144:337–48. doi: 10.1016/j.psep.2020.07.050.
  • Yuan, J. J., W. X. Huang, H. Ji, N. S. Kuai, and Y. Wu. 2012. Experimental investigation of dust MEC measurement. Powder Technology 217:245–51. doi: 10.1016/j.powtec.2011.10.033.
  • Zhang, X. Y., W. Gao, J. L. Yu, Y. S. Zhang, H. Y. Chen, and X. W. Huang. 2019. Flame propagation mechanism of nano-scale PMMA dust explosion. Powder Technology 363:207–17. doi: 10.1016/j.powtec.2019.12.056.
  • Zhang, Z., W. Gao, Y. H. Zhou, K. Zhang, and H. P. Jiang. 2023. Characteristics of nano-PMMA dust explosion through the vented tube. Process Safety and Environmental Protection 176:249–59. doi: 10.1016/j.psep.2023.05.091.
  • Zhang, X. H., K. Hattar, Y. X. Chen, L. Shao, J. Li, C. Sun, K. Y. Yu, N. Li, M. L. Taheri, H. Y. Wang, et al. 2018. Radiation damage in nanostructured materials. Progress in Materials Science 96:217–321. doi: 10.1016/j.pmatsci.2018.03.002.
  • Zhang, Q. M., E. Y. Wang, X. J. Feng, S. X. Liu, and D. Chen. 2024. Disasters of gas-coal spontaneous combustion in goaf of steeply inclined extra-thick coal seams. Journal of Rock Mechanics and Geotechnical Engineering (published online). doi: 10.1016/j.jrmge.2023.12.008
  • Zhang, J. S., P. H. Xu, L. H. Sun, W. Y. Zhang, and J. H. Jin. 2018. Factors influencing and a statistical method for describing dust explosion parameters: A review. Journal of Loss Prevention in the Process Industries 56:386–401. doi: 10.1016/j.jlp.2018.09.005.
  • Zhang, T., J. F. Zhang, S. Geng, X. Zhang, R. Q. Liu, G. E. Fu, J. F. Xu, H. X. Zhao, Y. H. Lan, Y. A. Feng, et al. 2024. Insight into energy release characteristics of TiH2 dust explosion through ignition experiments and molecular dynamic simulations. Process Safety and Environmental Protection 185:853–63. doi: 10.1016/j.psep.2024.03.061.
  • Zhong, S. J., and Z. F. Wang. 2009. Coal pulverization system: Explosion prevention and process control. Measurement and Control 42 (3):81–3. doi: 10.1177/002029400904200305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.