0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of particle behavior and erosion wear in a centrifugal pump using coarse-grained Discrete Element Method

, , &

References

  • Abishek, S., J. C. King, and R. Narayanaswamy. 2017. Computational analysis of two-phase flow and heat transfer in parallel and counter flow double-pipe evaporators. International Journal of Heat and Mass Transfer 104:615–26. doi: 10.1016/j.ijheatmasstransfer.2016.08.089.
  • Akbarzadeh, E., E. Elsaadawy, A. M. Sherik, J. K. Spelt, and M. Papini. 2012. The solid particle erosion of 12 metals using magnetite erodent. Wear 282–283:40–51. doi: 10.1016/j.wear.2012.01.021.
  • Aligoodarz, M. R., M. Dalvandi, and A. Mehrpanahi. 2020. Solid-phase effects on the performance of a centrifugal slurry pump using computational fluid dynamics. Journal of Computational and Applied Research in Mechanical Engineering 11:243-255. doi: 10.22061/jcarme.2020.5977.1763.
  • Arabnejad Khanouki, H., P. Zahedi, S. A. Shirazi, and B. S. McLaury. 2017. Erosion modeling in high concentration slurry flow. In ASME 2017 Fluids Engineering Division Summer Meeting FEDSM2017.Hawaii,USA.doi: 10.1115/FEDSM2017-69355.
  • Archard, J. F. 1953. Contact and rubbing of flat surfaces. Journal of Applied Physics 24 (8):981–8. doi: 10.1063/1.1721448.
  • Babaoğlu, N. U., F. Parvaz, S. H. Hosseini, K. Elsayed, and G. Ahmadi. 2021. Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technology 384:82–99. doi: 10.1016/j.powtec.2021.02.008.
  • Borodich, F. M. 2014. The Hertz-type and adhesive contact problems for depth-sensing indentation. Advances in Applied Mechanics 47:225–366. doi: 10.1016/B978-0-12-800130-1.00003-5.
  • Bourgeois, R. J., and R. J. Kosmicki. 2016. Slurry pump casing wear prediction using numerical multi-phase flow simulation. In ASME 2009 Fluids Engineering Division Summer Meeting FEDSM2009.Vail, Colorado USA.
  • Boyce, M. P. 2012. Compressor and turbine performance characteristics. Gas Turbine Engineering Hand Book, Elsevier, 139-76. doi:10.1016/b978-0-12-383842-1.00003-2.
  • Calderón-Hernández, J. W., A. Sinatora, H. G. de Melo, A. P. Chaves, E. S. Mano, L. S. Leal Filho, J. L. Paiva, A. S. Braga, and T. C. Souza Pinto. 2020. Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time. Wear 450–451:203272. doi: 10.1016/j.wear.2020.203272.
  • Cheng, J., N. Zhang, Z. Li, Y. Dou, and Y. Cao. 2017. Erosion failure of horizontal pipe reducing wall in power-law fluid containing particles via CFD – DEM coupling method. Journal of Failure Analysis and Prevention 17 (5):1067–80. doi: 10.1007/s11668-017-0340-1.
  • Cortes, C., and A. Gil. 2007. Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science. 33 (5):409–52. doi: 10.1016/j.pecs.2007.02.001.
  • Di Renzo, A., E. S. Napolitano, and F. P. Di Maio. 2021. Coarse-grain dem modelling in fluidized bed simulation: A review. Processes 9 (2):279. doi: 10.3390/pr9020279.
  • El-Emam, M. A., L. Zhou, E. Yasser, L. Bai, and W. Shi. 2022. Computational methods of erosion wear in centrifugal pump: A state-of-the-art review. Archives of Computational Methods in Engineering 29 (6):3789–814. doi: 10.1007/s11831-022-09714-x.
  • El-Emam, M. A., L. Zhou, W. Shi, and C. Han. 2021. Performance evaluation of standard cyclone separators by using CFD–DEM simulation with realistic bio-particulate matter. Powder Technology. 385:357–74. doi: 10.1016/j.powtec.2021.03.006.
  • El-Emam, M. A., L. Zhou, W. Shi, C. Han, L. Bai, and R. Agarwal. 2021. Theories and applications of CFD–DEM coupling approach for granular flow: A review. Netherlands: Springer, doi: 10.1007/s11831-021-09568-9.
  • El-Emam, M. A., W. Shi, and L. Zhou. 2019. CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter. Advanced Powder Technology 30 (11):2686–702. doi: 10.1016/j.apt.2019.08.015.
  • Fang, J., X. Ling, and Z. F. Sang. 2013. Solid suspension in stirred tank equipped with multi-side-entering agitators. Engineering Applications of Computational Fluid Mechanics 7 (2):282–94. doi: 10.1080/19942060.2013.11015471.
  • Fen, L., W. Yu, S. A. Ei-Shahat, L. Guojun, and Z. Xiangyuan. 2019. Numerical Study of Solid Particle Erosion in a Centrifugal Pump for Liquid-Solid Flow. ASME Journal of Fluids Engineering 141 (12):121302. doi: 10.1115/1.4043580.
  • Finnie, I. 1972. Some observations on the erosion of ductile metals. Wear 19 (1):81–90. doi: 10.1016/0043-1648(72)90444-9.
  • Gao, X., W. Shi, Y. Shi, H. Chang, and T. Zhao. 2020. DEM-CFD simulation and experiments on the flow characteristics of particles in vortex pumps. Water 12 (9):2444. doi: 10.3390/w12092444.
  • Gao, Z., W. Zhu, L. Lu, J. Deng, J. Zhang, and F. Wuang. 2014. Numerical and experimental study of unsteady flow in a large centrifugal pump with stay vanes. Journal of Fluids Engineering 136 (7):071101. doi: 10.1115/1.4026477.
  • Ghorani, M. M., M. H. Sotoude Haghighi, A. Maleki, and A. Riasi. 2020. A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory. Renew. Energy 162:1036–53. doi: 10.1016/j.renene.2020.08.102.
  • Gohil, P. P., and R. P. Saini. 2015. Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant. Energy 93:613–24. doi: 10.1016/j.energy.2015.09.042.
  • Güner, M., and M. M. Özbayer. 2019. Wear and its effects in centrifugal pumps. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 (3):569–82. doi: 10.29133/yyutbd.518139.
  • Guo, Y., and J. S. Curtis. 2015. Discrete element method simulations for complex granular flows. Annual Review of Fluid Mechanics 47 (1):21–46. doi: 10.1146/annurev-fluid-010814-014644.
  • Han, W., W. Ma, R. Li, and Q. Li. 2012. The numerical analysis of radial thrust and axial thrust in the screw centrifugal pump. Procedia Engineering. 31:176–81. doi: 10.1016/j.proeng.2012.01.1009.
  • Huang, B., C. Li, Y. Zhang, W. Ding, M. Yang, Y. Yang, H. Zhai, X. Xu, D. Wang, S. Debnath, et al. 2021. Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chinese J. Aeronaut 34 (6):1–17. doi: 10.1016/j.cja.2020.07.004.
  • Huang, S., X. Su, and G. Qiu. 2015. Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling. Engineering Applications of Computational Fluid Mechanics. 9 (1):411–8. doi: 10.1080/19942060.2015.1048619.
  • Huilin, L., H. Yurong, and D. Gidaspow. 2003. Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow. Chemical Engineering Sciences 58 (7):1197–205. doi: 10.1016/S0009-2509(02)00635-8.
  • Nadja Oliveria.2012. Rotodynamic pumps—Hydraulic performance acceptance tests—Grades 1, 2 and 3.International Organization for Standardization 2012.Geneva,Switzerland.
  • Jiang, L., L. Bai, P. Xue, G. Peng, and L. Zhou. 2022. Two-way coupling simulation of solid-liquid two-phase flow and wear experiments in a slurry pump. Journal of Marine Science and Engineering 10 (1):57. doi: 10.3390/jmse10010057.
  • Kang, C., Q. Cao, S. Teng, H. Liu, and K. Ding. 2023. Wear characteristics of a centrifugal pump transporting solid–liquid mixture: An experimental and numerical study. Ain Shams Engineering Journal 15 (1):102277. doi: 10.1016/j.asej.2023.102277.
  • Kannojiya, V., and S. Kumar. 2020. Assessment of optimum slurry pipe design for minimum erosion. Scientia Iranica. doi: 10.24200/sci.2019.52073.2519.
  • Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker. 2012. Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics An International Journal 12 (2/3):140–52. doi: 10.1504/PCFD.2012.047457.
  • Kosaku, Y., Y. Tsunazawa, and C. Tokoro. 2023. A coarse grain model with parameter scaling of adhesion forces from liquid bridge forces and JKR theory in the discrete element method. Chemical Engineering Sciences 268:118428. doi: 10.1016/j.ces.2022.118428.
  • Kumar, S., B. K. Gandhi, and S. K. Mohapatra. 2014. Performance characteristics of centrifugal slurry pump with multi-sized particulate bottom and fly ash mixtures. Particulate Science and Technology 32 (5):466–76. doi: 10.1080/02726351.2014.894163.
  • Lei, H. M., Y. X. Xiao, F. N. Chen, S. H. Ahn, Z. W. Wang, Z. H. Gui, Y. Y. Luo, and X. R. Zhao. 2018. Numerical simulation of solid-liquid two-phase flow in a centrifugal pump with different wear blades degree, IOP. IOP Conference Series 163:012027. doi: 10.1088/1755-1315/163/1/012027.
  • Levenspiel, O., and A. Haider. 1989. Drag Coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology. 58 (1):63–70. doi: 10.1016/0032-5910(89)80008-7.
  • Mayer, J., R. Engelhorn, R. Bot, T. Weirich, C. Herwartz, and F. Klocke. 2006. Wear characteristics of second-phase-reinforced sol-gel corundum abrasives. Acta Materialia. 54 (13):3605–15. doi: 10.1016/j.actamat.2006.03.049.
  • McLaury, B. S., J. Wang, S. A. Shirazi, J. R. Shadley, and E. F. Rybicki. 1997. Solid Particle Erosion in Long Radius Elbows and Straight Pipes. Paper presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas. doi: 10.2118/38842-MS.
  • Nasato, D. S., C. Goniva, S. Pirker, and C. Kloss. 2015. Coarse graining for large-scale DEM simulations of particle flow – An investigation on contact and cohesion models. Procedia Engineering. 102:1484–90. doi: 10.1016/j.proeng.2015.01.282.
  • Noon, A. A., and M. H. Kim. 2016. Erosion wear on centrifugal pump casing due to slurry flow. Wear 364–365:103–11. doi: 10.1016/j.wear.2016.07.005.
  • Norouzi, H. Reza., R. Zarghami, R. Sotudeh-Gharebagh, and N. Mostoufi. 2016. Coupled CFD-DEM modeling: Formulation, implementation and application to multiphase flows, Wiley, 1–416. doi: 10.1002/9781119005315.
  • Pagalthivarthi, K. V., P. K. Gupta, V. Tyagi, and M. R. Ravi. 2011. CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows. Journal of Computational Multiphase Flows 3 (4):225–45. doi: 10.1260/1757-482X.3.4.225.
  • Pan, D., H. Zhao, H. Zhang, P. Zhao, Y. Li, and Q. Zou. 2019. Effect of different corundum sources on microstructure and properties of Al2O3–Cr2O3 refractories. Ceramics International 45 (15):18215–21. doi: 10.1016/j.ceramint.2019.05.218.
  • Peng, G., Q. Chen, L. Bai, Z. Hu, L. Zhou, and X. Huang. 2021. Wear mechanism investigation in a centrifugal slurry pump impeller by numerical simulation and experiments. Engineering Failure Analysis 128:105637. doi: 10.1016/j.engfailanal.2021.105637.
  • Peng, G., X. Huang, L. Zhou, G. Zhou, and H. Zhou. 2020. Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Engineering Failure Analysis 114:104602. doi: 10.1016/j.engfailanal.2020.104602.
  • Qiao, Z., Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, and S. Wang. 2012. PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. American Institute of Chemical Engineers – Journals. 59 (1):215–28. doi: 10.1002/aic.
  • Queteschiner, D., T. Lichtenegger, S. Pirker, and S. Schneiderbauer. 2018. Multi-level coarse-grain model of the DEM. Powder Technology. 338:614–24. doi: 10.1016/j.powtec.2018.07.033.
  • Qui, X, A. Potapov, M. Song, and L. Nordell. 2001. Prediction of wear of mill lifters using discrete element method, Semi-Autogenous Grinding Conferences, Vancouver Canada.
  • Sakai, M., and S. Koshizuka. 2009. Large-scale discrete element modeling in pneumatic conveying. Chemical Engineering Sciences 64 (3):533–9. doi: 10.1016/j.ces.2008.10.003.
  • Sakai, M., H. Takahashi, C. C. Pain, J. P. Latham, and J. Xiang. 2012. Study on a large-scale discrete element model for fine particles in a fluidized bed. Advanced Powder Technology 23 (5):673–81. doi: 10.1016/j.apt.2011.08.006.
  • Sakai, M., M. Abe, Y. Shigeto, S. Mizutani, H. Takahashi, A. Viré, J. R. Percival, J. Xiang, and C. C. Pain. 2014. Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chemical Engineering Journal and the Biochemical Engineering Journal 244:33–43. doi: 10.1016/j.cej.2014.01.029.
  • Sedrez, T. A., R. K. Decker, M. K. da Silva, D. Noriler, and H. F. Meier. 2017. Experiments and CFD-based erosion modeling for gas-solids flow in cyclones. Powder Technology 311:120–31. doi: 10.1016/j.powtec.2016.12.059.
  • Shi, B., J. Pan, L. Wu, X. Zhang, Y. Qiu, and Y. Zhang. 2020. A prediction method of wear for volute casing of a centrifugal slurry pump.Geofluids 2020: 8847087.doi:10.1155/2020/8847087
  • Şibil, R., E. Aras, and M. Kankal. 2021. Comparison of various turbulence model performance in computational fluid dynamics analyses of the oxidation ditches with experimental validation. Process Safety and Environment Protection 154:43–59. doi: 10.1016/j.psep.2021.07.046.
  • Singh, H., S. Kumar, and S. K. Mohapatra. 2020. Modeling of solid-liquid flow inside conical diverging sections using computational fluid dynamics approach. International Journal of Mechanical Sciences 186:105909. doi: 10.1016/j.ijmecsci.2020.105909.
  • Singh, V., S. Kumar, and S. K. Mohapatra. 2019. Modeling of erosion wear of sand water slurry flow through pipe bend using CFD. Journal of Applied Fluid Mechanics 12 (3):679–87. doi: 10.29252/jafm.12.03.29199.
  • Sinha, S. L., S. K. Dewangan, and A. Sharma. 2017. A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral − slurry. Particulate Science and Technology 35 (1):103–18. doi: 10.1080/02726351.2015.1131792.
  • Song, X., R. Yao, Y. Shen, H. Bi, Y. Zhang, L. Du, and Z. Wang. 2021. Numerical prediction of erosion based on the solid-liquid two-phase flow in a double-suction centrifugal pump. Journal of Marine Science and Engineering 9 (8):836. doi: 10.3390/jmse9080836.
  • Tarodiya, R., and B. K. Gandhi. 2019. Experimental investigation of centrifugal slurry pump casing wear handling solid-liquid mixtures. Wear 434–435:202972. doi: 10.1016/j.wear.2019.202972.
  • Tarodiya, R., and B. K. Gandhi. 2019. Numerical simulation of a centrifugal slurry pump handling solid-liquid mixture: Effect of solids on flow field and performance. Advanced Powder Technology. 30 (10):2225–39. doi: 10.1016/j.apt.2019.07.003.
  • Tauviqirrahman, M., J. Jamari, S. Susilowati, C. Pujiastuti, B. Setiyana, H. Pasaribu, and M. I. Ammarullah. 2022. Performance Comparison of Newtonian and Non-Newtonian Fluid on a heterogeneous slip/no-slip journal bearing system based on CFD-FSI method. Fluids 7(7): 225.doi:10.3390/fluids7070225
  • Terwey, J. T., M. A. Fourati, F. Pape, and G. Poll. 2020. Energy-based modelling of adhesive wear in the mixed lubrication regime. Lubricants 8 (2):16. doi: 10.3390/lubricants8020016.
  • Wang, Y., W. Li, T. He, H. Liu, C. Han, and Z. Zhu. 2022. Experimental study on the influence of particle diameter, mass concentration, and impeller material on the wear performance of solid–liquid two-phase centrifugal pump blade. Frontiers in Energy Research 10:1–12. doi: 10.3389/fenrg.2022.893385.
  • Washino, K., C.-H. Hsu, T. Kawaguchi, and Y. Tsuji. 2007. Similarity model for DEM simulation of fluidized bed. Journal of the Society of Powder Technology, Japan 44 (3):198–205. doi: 10.4164/sptj.44.198.
  • Wu, B., X. Li Wang, H. Liu, and H. Liang Xu. 2015. Numerical simulation and analysis of solid-liquid two-phase three-dimensional unsteady flow in centrifugal slurry pump. Journal of Central South University 22 (8):3008–16. doi: 10.1007/s11771-015-2837-7.
  • Xing, D., Z. Hai-Lu, and W. Xin-Yong. 2009. Finite element analysis of wear for centrifugal slurry pump, in. Procedia Earth and Planetary Science 1 (1):1532–8. doi: 10.1016/j.proeps.2009.09.236.
  • Xu, L., Q. Zhang, J. Zheng, and Y. Zhao. 2016. Numerical prediction of erosion in elbow based on CFD-DEM simulation. Powder Technology 302:236–46. doi: 10.1016/j.powtec.2016.08.050.
  • Xu, W., Q. Li, J. Wang, and Y. Jin. 2016. Performance evaluation of a new cyclone separator - Part II simulation results. Separation and Purification Technology 160:112–6. doi: 10.1016/j.seppur.2016.01.012.
  • Xu, Y., L. Tan, Y. Liu, Y. Hao, B. Zhu, and S. Cao. 2018. Pressure fluctuation and flow pattern of a mixed-flow pump under design and off-design conditions. Proceedings of the Institution of Mechanical Engineers C 232 (13):2430–40. doi: 10.1177/0954406217721258.
  • Zhang, X., W. You, Y. Zhou, Y. Li, and S. Qiu. 2013. Analysis on the corrosion failure of MDS mine multistage centrifugal pump impeller. Advanced Materials Research 650:344–9. doi: 10.4028/www.scientific.net/AMR.650.344.
  • Zhang, Y., Y. Li, B. Cui, Z. Zhu, and H. Dou. 2013. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump. Chinese Journal of Mechanical Engineering 26 (1):53–60. doi: 10.3901/CJME.2013.01.053.
  • Zhao, J., and T. Shan. 2013. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics. Powder Technology. 239:248–58. doi: 10.1016/j.powtec.2013.02.003.
  • Zhao, R. J., Y. L. Zhao, D. S. Zhang, Y. Li, and L. L. Geng. 2021. Numerical investigation of the characteristics of erosion in a centrifugal pump for transporting dilute particle-laden flows. Journal of Marine Science and Engineering 9 (9):961. doi: 10.3390/jmse9090961.
  • Zhao, Z., L. Zhou, L. Bai, B. Wang, and R. Agarwal. 2024. Recent advances and perspectives of CFD–DEM simulation in fluidized bed. Netherlands: Springer. doi: 10.1007/s11831-023-10001-6.
  • Zhong, W., A. Yu, X. Liu, Z. Tong, and H. Zhang. 2016. DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications. Powder Technology. 302:108–52. doi: 10.1016/j.powtec.2016.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.