526
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil

, , , , , , & show all
Pages 267-279 | Received 21 Jun 2013, Accepted 21 Oct 2013, Published online: 27 Jan 2014

References

  • Ahmad M, Hashimoto Y, Moon HD, Lee SS, Ok SY. Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. J Hazard Mater. 2012;209–210:392–401. doi: 10.1016/j.jhazmat.2012.01.047
  • Ahmad M, Lee SS, Yang EJ, Ro HM, Han Lee Y, Ok SY. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol Environ Saf. 2012;79:225–231. doi: 10.1016/j.ecoenv.2012.01.003
  • Almaroai AY, Usman AAR, Ahmad M, Kim KR, Moon HD, Lee SS, Ok SY. Effects of synthetic chelators and low-molecular-weight organic acids on Chromium, Copper, and Arsenic uptake and translocation in Maize (Zea mays L.). Soil Sci. 2012;177:655–663. doi: 10.1097/SS.0b013e31827ba23f
  • Almaroai AY, Usman AAR, Ahmad M, Kim K-R, Vithanage M, Ok SY. Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environ Technol. 2013;34(6):747–755. doi: 10.1080/09593330.2012.715757
  • Usman ARA, Lee SS, Awad MY, Lim JK, Yang EJ, Ok SY. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere. 2012;87:872–878. doi: 10.1016/j.chemosphere.2012.01.028
  • Dwivedi PC, Sahu NJ, Mohanty RC, Mohan RB, Meikap CB. Column performance of granular activated carbon packed bed for Pb(II) removal. J Hazard Mater. 2008;156:596–603. doi: 10.1016/j.jhazmat.2007.12.097
  • Gratão PL, Polle A, Lea JP, Azevedo AR. Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol. 2005;32:481–494. doi: 10.1071/FP05016
  • Hartley W, Lepp WN. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Environ Pollut. 2008;156:1030–1040. doi: 10.1016/j.envpol.2008.04.024
  • Vithanage M, Senevirathna W, Chandrajith R, Weerasooriya R. Arsenic binding mechanisms on natural red earth: a potential substrate for pollution control. Sci Total Environ. 2007;379:244–248. doi: 10.1016/j.scitotenv.2006.03.045
  • Lim EJ, Ahmad M, Lee SS, Shope LC, Hashimoto Y, Kim RK, Usman AAR, Yang EJ, Ok SY. Effects of lime-based waste materials on immobilization and phytoavailability of Cd and Pb in contaminated soil. CLEAN - Soil, Air, Water. doi:2013.10.1002/clen.201200169.
  • Ok SY, Kim SC, Kim DK, Skousen JG, Lee JS, Cheong YW, Kim SJ, Yang JE. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health. 2011;33:23–30. doi: 10.1007/s10653-010-9364-0
  • Sylvester P, Westerhoff P, Möller T, Badruzzaman M, Boyd O. A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environ Eng Sci. 2007;24:104–112. doi: 10.1089/ees.2007.24.104
  • Dou X, Zhang Y, Wang H, Wang T, Wang Y. Performance of granular zirconium–iron oxide in the removal of fluoride from drinking water. Water Res. 2011;45:3571–3578. doi: 10.1016/j.watres.2011.04.002
  • Koo N, Jo HJ, Lee SH, Kim JG. Using response surface methodology to assess the effects of iron and spent mushroom substrate on arsenic phytotoxicity in lettuce (Lactuca sativa L.). J Hazard Mater. 2011;192:381–387.
  • Mahatantila K, Vithanage M, Seike Y, Okumura M. Adsorptive removal of cadmium by natural red earth: equilibrium and kinetic studies. Environ Technol. 2011;33:597–606. doi: 10.1080/09593330.2011.586059
  • Mahatantila K, Seike Y, Okumura M. Adsorptive removal of lead(II) ion using natural red earth from its iron and aluminum oxide forms. Int J Eng Sci Health. 2011;3(2):1655–1666.
  • Vithanage M, Chandrajith R, Bandara A, Weerasooriya R. Mechanistic modeling of arsenic retention on natural red earth in simulated environmental systems. J Colloid Interface Sci. 2006;294:265–272. doi: 10.1016/j.jcis.2005.07.026
  • Gallegos-Garcia M, Ramírez-Muñiz K, Song S. Arsenic removal from water by adsorption using iron oxide minerals as adsorbents: a review. Miner Process Extr Metall Rev. 2011;33:301–315. doi: 10.1080/08827508.2011.584219
  • Blackwell AJ, Carr WP. Study of the fluoride adsorption characteristics of porous microparticulate zirconium oxide, J. Chromatogr. 1991;549:43–57. doi: 10.1016/S0021-9673(00)91417-1
  • Biswas K, Bandhoyapadhyay D, Ghosh U. Adsorption kinetics of fluoride on iron(III)-zirconium(IV) hybrid oxide. Adsorption. 2007;13:83–94. doi: 10.1007/s10450-007-9000-1
  • Dahanayake JKS. Study of red and brown earth deposits of north-west Sri Lanka. J Geol Soc India. 1979;20:433–440.
  • Rajapaksha UA, Vithanage M, Jayarathna L, Kumara KC. Natural red earth as a low cost material for arsenic removal: kinetics and the effect of competing ions. Applied Geochem. 2011;26:648–654. doi: 10.1016/j.apgeochem.2011.01.021
  • Friedel KJ, Langer T, Siebe C, Stahr K. Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biol Fertil Soils. 2000;31:414–421. doi: 10.1007/s003749900188
  • Usman ARA, Kuzyakov Y, Stahr K. Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil. J Soils Sed. 2005;5:245–252. doi: 10.1065/jss2005.05.141
  • Usman ARA, Kuzyakov Y, Stahr K. Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil. Chem Ecol. 2004;20:123–135. doi: 10.1080/02757540410001665971
  • Yoon Y, Ok SY, Kim YD, Kim GJ. Agricultural recycling of the by-product concentrate of livestock wastewater treatment plant processed with VSEP RO and bio-ceramic SBR. Water Sci Technol. 2004;49:405–412.
  • Sumner EM, Miller PW. Cation exchange capacity and exchange coefficients. In: Sparks ALPDL, Helmke AP, Loeppert HR, Soltanpour NP, Tabatabai AM, Johnston TC, Sumner EM, editors. Methods of soil analysis, Part 3 - chemical methods. Madison, Wisconsin, USA: American Society of Agronomy-Soil Sci. Soc. Am. Inc.; 1996. p. 1201–1230.
  • Gee WG, Orr D. Particle size analysis. In: Dick WA, editor. Methods of soil analysis part 4, Physical methods. Soil Science Society of America , Inc; 2002, p. 255–293.
  • US Environmental Protection Agency (EPA). Soil screening guidance: user's guidance. Washington, DC: Office of Solid Waste and Emergency Response, USEPA; 1996. p. 30.
  • Cornell MR, Schwertmann U. The iron oxides. In: The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses. Weinheim, Germany: Willey-VCH VerlagGmbH & Co. KGaA, ProSatz Unger; 2003, p. 345–363.
  • EPA. Toxicity characteristics leaching procedure. US Environmental Protection Agency, Fed. Reg; 1999, p. 11798.
  • Tessier A, Campbell CGP, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51:844–851. doi: 10.1021/ac50043a017
  • Hashimoto Y, Taki T, Sato T. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions. J Environ Manage. 2009;90:1782–1789. doi: 10.1016/j.jenvman.2008.11.004
  • Lee Y, Kim H. Response of soil microbial communities to different farming systems for upland soybean cultivation. J Korean Soc Appl Biol Chem. 2011;54:423–433. doi: 10.3839/jksabc.2011.066
  • Yang KS, Kim KM, Seo WY, Choi JK, Lee TS, Kwak SY, Lee HY. Soil microbial community analysis of between No-till and tillage in a controlled horticultural field. Acad J. 2012;28(4):1797–1801.
  • Schutter EM, Dick PR. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J. 2000;64:1659–1668. doi: 10.2136/sssaj2000.6451659x
  • Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere. 1997;35:275–294. doi: 10.1016/S0045-6535(97)00155-0
  • Frostegård Å, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microb. 1993;59:3605–3617.
  • Bossio AD, Scow MK. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol. 1998;35:265–278. doi: 10.1007/s002489900082
  • Guckert BJ, Hood AM, White CD. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl Environ Microb. 1986;52:94–801.
  • Wright FS, Nichols AK, Schmidt FW. Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere. 2006;64:1219–1224. doi: 10.1016/j.chemosphere.2005.11.041
  • SAS Institute. SAS/STAT User's Guide, Release 9.1. Cary, NC, USA: SAS Institute Inc.; 2004.
  • Ok SY, Lee SS, Jeon WT, Oh SE, Usman ARA, Moon HD. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ Geochem Health. 2011b;33:31–39. doi: 10.1007/s10653-010-9362-2
  • Ok SY, Lim EJ, Moon HD. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environ Geochem Health. 2011c;33:83–91. doi: 10.1007/s10653-010-9329-3
  • Ok SY, Oh ES, Ahmad M, Hyun S, Kim KR, Moon HD, Lee SS, Lim JK, Jeon WT, Yang EJ. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ Earth Sci. 2010;61:1301–1308. doi: 10.1007/s12665-010-0674-4
  • Jayarathne L, Ng JW, Bandara A, Vitanage M, Dissanayake BC, Weerasooriya R. Fabrication of succinic acid-γ-Fe2O3 nano core–shells. Colloids Surf Physicochem Eng Aspects. 2012;403:96–102. doi: 10.1016/j.colsurfa.2012.03.061
  • Kumpiene J, Desogus P, Schulenburg S, Arenella M, Renella G, Brannval E, Largerkvist A, Andreas L, Sjoblom R. Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover. Environ. Sci Pollut Res. 2013;20(12):8649–8662. doi: 10.1007/s11356-013-1818-3
  • Trivedi P, Dyer AJ, Sparks LD. Lead sorption onto ferrihydrite. 1. A macroscopic and spectroscopic assessment. Environ Sci Technol. 2003;37:908–914.
  • Bargar RJ, Brown EGJr, Parks AG. Surface complexation of Pb(II) at oxide-water interfaces: I. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides, Geochim. Cosmochim Acta. 1997;61:2617–2637.
  • Wang S, Mulligan NC. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere. 2009;74:274–279. doi: 10.1016/j.chemosphere.2008.09.040
  • Jackson PB, Seaman CJ, Bertsch MP. Fate of arsenic compounds in poultry litter upon land application. Chemosphere. 2006;65:2028–2034. doi: 10.1016/j.chemosphere.2006.06.065
  • Balser CT, Treseder KK, Ekenler M. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol Biochem. 2005;37:601–604. doi: 10.1016/j.soilbio.2004.08.019
  • Van Der Heijden MGA, Wiemken A. Sanders RI, Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol. 2003;157:569–578. doi: 10.1046/j.1469-8137.2003.00688.x
  • Mechri B, Chehab H, Attia F, Mariem BF, Braham M, Hammami M. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur J Soil Biol. 2010;46:312–318. doi: 10.1016/j.ejsobi.2010.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.