598
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation

, , , , &
Pages 555-565 | Received 07 Aug 2013, Accepted 20 Nov 2013, Published online: 05 Feb 2014

References

  • Bertin C, Yang XH, Weston LA. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil. 2003;256:67–83. doi: 10.1023/A:1026290508166
  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159
  • Neumann G. Root exudates and nutrient cycling. In: Marschner P, Rengel Z, editors. Nutrient cycling in terrestrial ecosystems. Berlin, Germany: Springer Berlin Heidelberg Inc; 2007, p. 123–157.
  • Inderjit, Wardle DA, Karban R, Callaway RM. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol. 2011;26:655–662. doi: 10.1016/j.tree.2011.08.003
  • Kuzyakov Y, Larionova AA. Root and rhizomicrobial respiration: A review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J Plant Nutr Soil Sci. 2005;168:503–520.
  • Dennis PG, Miller AJ, Hirsch PR. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol. 2010;72:313–327.
  • Jones DL, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 2004;163:459–480. doi: 10.1111/j.1469-8137.2004.01130.x
  • Phillips RP, Erlitz Y, Bier R, Bernhardt ES. New approach for capturing soluble root exudates in forest soils. Funct Ecol. 2008;22:990–999. doi: 10.1111/j.1365-2435.2008.01495.x
  • Fransson PMA, Johansson EM. Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. FEMS Microbiol Ecol. 2010;71:186–196. doi: 10.1111/j.1574-6941.2009.00795.x
  • Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–681. doi: 10.1111/j.1365-3040.2009.01926.x
  • Yin HJ, Chen Z, Liu Q. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biol Biochem. 2012;50:77–84. doi: 10.1016/j.soilbio.2012.03.004
  • Saxe H, Cannell MGR, Johnsen B, Ryan MG, Vourlitis G. Tree and forest functioning in response to global warming. New Phytol. 2001;149:369–399. doi: 10.1046/j.1469-8137.2001.00057.x
  • Wang KY, Kellomaki S, Zha T. Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year-old pine trees after a four-year exposure to carbon dioxide and temperature elevation. Photosynthetica. 2003;41:167–175. doi: 10.1023/B:PHOT.0000011948.00870.db
  • Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biol. 2013;19:2158–2167. doi: 10.1111/gcb.12161
  • Zhao CZ, Liu Q. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Can J For Res. 2009;39:1–11. doi: 10.1139/X08-152
  • Johnson DW. Progressive N limitation in forests: Review and implications for long-term responses to elevated CO2. Ecology. 2006;87:64–75. doi: 10.1890/04-1781
  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature. 2006;440:922–925. doi: 10.1038/nature04486
  • Allison SD, Treseder KK. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biol. 2008;14:2898–2909. doi: 10.1111/j.1365-2486.2008.01716.x
  • Bell TH, Klironomos JN, Henry HAL. Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Sci Soc Am J. 2010;74:820–828. doi: 10.2136/sssaj2009.0036
  • Dundek P, Holik L, Rohlik T, Hromadko L, Vranova V, Rejšek K, Formanek P.: Methods of plant root exudates analysis: a review. Acta Univ Agric et Silvic Mendel Brun. 2011;LIX:241–246.
  • Vranova V, Rejsek K, Skene KR, Janous D, Formanek P. Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review. J Plant Nutr Soil Sci. 2013;176:175–199.
  • Paterson E. Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur. J Soil Sci. 2003;54:741–750. doi: 10.1046/j.1351-0754.2003.0557.x
  • Wan S, Luo Y, Wallace LL. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biol. 2002;8:754–768. doi: 10.1046/j.1365-2486.2002.00510.x
  • Yao X, Liu Q. Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply. Physiol Plantarum. 2007;129:364–374. doi: 10.1111/j.1399-3054.2006.00815.x
  • Sinsabaugh RL. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem. 2010;42:391–404. doi: 10.1016/j.soilbio.2009.10.014
  • Phillips RP, Finzi AC, Bernhardt ES. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett. 2011;14:187–194. doi: 10.1111/j.1461-0248.2010.01570.x
  • Grayston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol. 1997;5:29–56. doi: 10.1016/S0929-1393(96)00126-6
  • Fan TWM, Lane AN, Pedler J, Crowley D, Higashi RM. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography mass spectrometry. Anal Biochem. 1997;251:57–68. doi: 10.1006/abio.1997.2235
  • Uren NC. Types, amounts, and possible functions of compunds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P, editors. The rhizosphere: Biochemistry and organic substances at the soil-plant interface. New York: Marcel Dekker, Inc; 2007, p. 1–21.
  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem. 2013;288:4502–4512. doi: 10.1074/jbc.M112.433300
  • Johansson EM, Fransson P, Finlay RD, van Hees PA. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biol Biochem. 2009;41:1111–1116. doi: 10.1016/j.soilbio.2009.02.016
  • Phillips RP, Bernhardt ES, Schlesinger WH. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol. 2009;29:1513–1523. doi: 10.1093/treephys/tpp083
  • Yin HJ, Liu Q, Lai T. Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecol Res. 2008;23:459–469. doi: 10.1007/s11284-007-0404-x
  • Hollister RD, Flaherty KJ. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl Vege Sci. 2010;13:378–387.
  • Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Treseder KK, Schlesinger WH, DeLucia EH, Finzi AC. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett. 2011;14:349–357.
  • Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett. 2012;15:1042–1049. doi: 10.1111/j.1461-0248.2012.01827.x
  • Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451: 289–292. doi: 10.1038/nature06591

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.