1,018
Views
132
CrossRef citations to date
0
Altmetric
Review Article

Some aspects of heavy metals contamination remediation and role of biosurfactants

, , , , &
Pages 707-723 | Received 02 Jul 2015, Accepted 14 Sep 2015, Published online: 05 Nov 2015

References

  • Juwarkar AA, Dubey KV, Nair A, Singh SK. Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian J Microbiol. 2008;48:142–146. doi: 10.1007/s12088-008-0014-5
  • Silva RCFS, Almeida DG, Luna JM, et al. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci. 2014;15:12523–12542. doi: 10.3390/ijms150712523
  • Hazra C, Kundu D, Chaudhari A. Biosurfactant-assisted bioaugmentation in bioremediation. In: Satyanarayana T, Johri BN, Prakash A, editors. Microorganisms in environmental management: microbes and environment. New York: Springer; 2012. p. 631–664.
  • Chakraborty J, Das S. Microbial biodegradation and bioremediation. Philadelphia: Elsevier; 2014. Chapter 7, Biosurfactant-based bioremediation of toxic metals; p. 167–201.
  • Nessim RB, Bassiouny AR, Zaki HR, Moawad MN, KandeelL KM. Biosorption of lead and cadmium using marine algae. Chem Ecol. 2011;27:579–594. doi: 10.1080/02757540.2011.607439
  • Souza EC, Vessoni-Penna TC, Oliveira RPS. Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeter Biodegr. 2014;89:88–94. doi: 10.1016/j.ibiod.2014.01.007
  • Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv. 2007;25:99–121. doi: 10.1016/j.biotechadv.2006.10.004
  • Marchant R, Banat IM. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol. 2012;30:558–565. doi: 10.1016/j.tibtech.2012.07.003
  • Asçi Y, Nurbas M, Acikel YS. Removal of zinc ions from a soil component Na-feldspar by a rhamnolipid biosurfactant. Desalination. 2008;223:361–365. doi: 10.1016/j.desal.2007.01.205
  • Perfumo A, Rancich I, Banat IM. Biosurfactants book series: advances in experimental medicine and biology. New York: Springer; 2010. Chapter 672, Possibilities and challenges for biosurfactants uses in petroleum industry; p. 135–145.
  • Perfumo A, Rudden M, Smyth TJP, et al. Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential. Appl Microbiol Biotechnol. 2013;97:7297–7306. doi: 10.1007/s00253-013-4876-z
  • Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol. 2001;60:193–207. doi: 10.1016/S0013-7952(00)00101-0
  • Barros FFC, Quadros CP, Maróstica MR, et al. Surfactina: propriedades químicas, tecnológicas e funcionais para aplicações em alimentos. Química Nova. 2007;30:1–14. doi: 10.1590/S0100-40422007000200031
  • Barros FFC, Quadros CP, Pastore GM. Propriedades emulsificantes e estabilidade do biossurfactante produzido por Bacillus subtilis em manipueira. Ciencia e Tecnologia dos Alimentos. 2008;28:979–985. doi: 10.1590/S0101-20612008000400034
  • Dahrazma B, Mulligan CN. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere. 2007;69:705–711. doi: 10.1016/j.chemosphere.2007.05.037
  • Ochoa-Loza FJ, Noordman WH, Jannsen DB, et al. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere. 2007;66:1634–1642. doi: 10.1016/j.chemosphere.2006.07.068
  • Coimbra CD, Rufino RD, Luna JM, et al. Studies of the cell surface properties of Candida species and relation with the production of biosurfactants for environmental applications. Cur Microbiol. 2009;58:245–251. doi: 10.1007/s00284-008-9315-5
  • Menezes CTB, Barros EC, Rufino RD, et al. Replacing synthetic with microbial surfactants as collectors in the treatment of aqueous effluent produced by acid mine drainage, using the dissolved air flotation technique. Appl Biochem Biotechnol. 2011;163:540–546. doi: 10.1007/s12010-010-9060-7
  • Albuquerque CF, Luna-Finkler CL, Rufino RD, et al. Evaluation of biosurfactants for removal of heavy metal ions from aqueous effluent using flotation techniques. Int Rev Chem Eng. 2012;4:1–6.
  • Rufino RD, Luna JM, Marinho PHC, et al. Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. J Petr Sci Eng. 2013;109:117–122. doi: 10.1016/j.petrol.2013.08.014
  • Banat IM, Franzetti A, Gandolfi I, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0
  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, et al. Environmental applications of biosurfactants: recent advances. Int J Mol Sci. 2011;12:633–654. doi: 10.3390/ijms12010633
  • Banat IM, Satpute SK, Cameotra SS, et al. Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers Microbiol. 2014;5:697. doi:10.3389/fmicb.2014.00697.
  • Fracchia L, Ceresa C, Franzetti, A, et al. Biosurfactants: production and utilization—processes, technologies, and economics. In: Kosaric N, Sukan FV, editors. Surfactant science series, industrial applications of biosurfactants. Boca Raton, FL: CRC Press; 2014. Chapter 12, p. 245–260.
  • Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable substrates for biosurfactant production. Appl Microbiol Biotechnol Express. 2011;1:1–5.
  • Satpute SK, Banpurkar AG, Dhakephalkar PK, et al. Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol. 2009;30:127–144. doi: 10.3109/07388550903427280
  • Marchant R, Banat IM. Hydrocarbon and lipid microbiology protocols. Springer Protocols Handbooks; 2014, Protocols for measuring biosurfactant production in microbial cultures. doi:10.1007/8623_2014_10.
  • Silva RL, Farias CBB, Rufino RD, et al. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B: Biointerf. 2010;79:174–183. doi: 10.1016/j.colsurfb.2010.03.050
  • Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997;61:47–64.
  • Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends Biotechnol. 2006;24:509–515. doi: 10.1016/j.tibtech.2006.09.005
  • Marchant R, Banat IM. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett. 2012;34:1597–1605. doi: 10.1007/s10529-012-0956-x
  • Mao X, Jiang R, Xiao W, et al. Use of surfactants for the remediation of contaminated soils: a review. J Haz Mater. 2015;285:419–435. doi: 10.1016/j.jhazmat.2014.12.009
  • Hashim MA, Mukhopadhyay S, Sahu JN, et al. Remediation technologies for heavy metal contaminated groundwater. J Environ Manag. 2011;92:2355–2388. doi: 10.1016/j.jenvman.2011.06.009
  • Evanko CR, Dzombak DA. Remediation of metals-contaminated soils and groundwater. Technology evaluation report, TE-97-01. Pittsburgh, PA: Ground-Water Remediation Technologies Analysis Center; 1997.
  • WHO. Hazardous chemicals in human and environmental health: a resource book for school. College and university students. Geneva: World Health Organization; 2000.
  • Hammer MJ, Hammer MJJ. Water and waste water technology. 5th ed. New Jersey, NJ: Prentice-Hall; 2004. Water quality; p. 139–159.
  • Lenntech: water treatment. Lenntech: Lenntech Water Treatment and Air Purification; 2004.
  • Smith LA, Means JL, Chen A, et al. Remedial options for metals contaminated sites. Boca Raton, FL: Lewis Publishers; 1995.
  • Matthews PJ, Davis RD. Control of metal application rates from sewage sludge utilization in agriculture. Critical Rev Environ Control. 1984;14:199–250. doi: 10.1080/10643388409381718
  • Holleman AF, Wiberg E, Wiberg N. Iron. Leipzig: Verlag; 1985.
  • Dzombak DA, Morel FMM. Surface complexation modeling, hydrous ferric oxide. New York: Wiley-Interscience; 1990.
  • Lagrega MD, Buckingham PL, Evans JC. Hazardous waste management. New York: McGraw Hill; 1994. p. 1040–1048.
  • Teixeira RM. Viva terra sociedade de defesa, pesquisa e educação ambiental [internet]. São Paulo; [cited 2014 Sep 25]. Available from: http://www.vivaterra.org.br/vivaterra_metais_pesados.htm
  • Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red muds and heavy metals. J Haz Mater. 2006;136:324–329. doi: 10.1016/j.jhazmat.2005.12.022
  • US EPA: Recent developments for in situ treatment of metal contaminated soils. p. 68-W5-0055; 1997.
  • Khan FI, Husain T, Hejazi R. An overview and analysis of site remediation technologies. J Environ Manag. 2004;71:95–122. doi: 10.1016/j.jenvman.2004.02.003
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manag. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011
  • Reed BE, Carriere PC, Moore RJ. Flushing of a Pb (II) contaminated soil using HCL, EDTA and CaCl2. J Environ. 1996;122:48–50.
  • Briuns MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Safety. 2000;45:198–207. doi: 10.1006/eesa.1999.1860
  • Bennett RM, Cordero PRF, Bautista GS, Dedeles GR. Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chem Ecol. 2013;29:320–328. doi: 10.1080/02757540.2013.770478
  • Narayani M, Shetty KV. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Chem Ecol. 2013;43:955–1009.
  • Franzetti A, Tamburini E, Banat IM. Applications of biological surface active compounds in remediation technologies. Biosurfactants Book Series, Advances in experimental medicine and biology. Vol. 672; 2010. Chapter 3899:121–134.
  • Bodek I, Lyman WJ, Reehl WF, et al. Environmental inorganic chemistry: properties, processes and estimation methods. New York: Pergamon Press; 1998.
  • Singh P, Cameotra SS. Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun. 2004;319:291–297. doi: 10.1016/j.bbrc.2004.04.155
  • Juwarkar AA, Nair A, Dubey KV, et al. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere. 2007;68:1996–2002. doi: 10.1016/j.chemosphere.2007.02.027
  • Asçi Y, Nurbas M, Açikel YA. Comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. J Haz Mater. 2008;154:663–673. doi: 10.1016/j.jhazmat.2007.10.078
  • Liu Q, Lin J, Wang W, et al. Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J. 2015;93:31–37. doi: 10.1016/j.bej.2014.08.023
  • Wang S, Mulligan CN. Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl Geochem. 2009;24:928–935. doi: 10.1016/j.apgeochem.2009.02.017
  • Mulligan CN. Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interf Sci. 2009;14:372–378. doi: 10.1016/j.cocis.2009.06.005
  • Asci Y, Nurbas M, Acikel YA. Sorption of Cd(II) onto kaolinin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant. J Haz Mater. 2007;139:50–56. doi: 10.1016/j.jhazmat.2006.06.004
  • Dahrazma B, Mulligan CN, Nieh MP. Effects of additives on the structure of rhamnolipid (biosurfactant): a small-angle neutron scattering (SANS) study. J Colloid Interf Sci. 2008;319:590–593. doi: 10.1016/j.jcis.2007.11.045
  • Massara H, Mulligan CN, Hadjinicolaou J. Effect of rhamnolipids on chromium contaminated soil. Soil Sediment Cont Int J. 2007;16:1–14. doi: 10.1080/15320380601071241
  • Ara I, Mulligan CN. Conversion of Cr(VI) in water and soil using rhamnolipid. Paper presented at Canadian Geotechnical Conference. 6th Meeting; 2008 September; Edmonton, AB, p. 20–24.
  • Wen J, Stacey SP, McLaughlin MJ, Kirby JK. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol Biochem. 2009;41:2214–2221. doi: 10.1016/j.soilbio.2009.08.006
  • Diaz MA, de Ranson IS, Dorta BD, et al. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contam. 2015;24:16–29. doi: 10.1080/15320383.2014.907239
  • Wang S, Mulligan CN. Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochem. 2009;44:296–301. doi: 10.1016/j.procbio.2008.11.006
  • Asçi Y, Nurbas M, Sag Açikel Y. Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J Environ Manag. 2010;91:724–731. doi: 10.1016/j.jenvman.2009.09.036
  • Slizovskiy IB, Kelsey JW, Hatzinger PB. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms. Environ Toxicol Chem. 2011;30:112–123. doi: 10.1002/etc.357
  • Huang W, Liu ZM. Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B: Biointerf. 2013;105:113–119. doi: 10.1016/j.colsurfb.2012.12.040
  • Langley S, Beveridge TJ. Effect of O-side chain-lipopolysaccharide chemistry on metal binding. Appl Environ Microbiol. 1999;65:489–498.
  • Kim J, Vipulanandan C. Removal of lead from contaminated water and clay soil using a biosurfactant. J Environ Eng. 2006;132:777–786. doi: 10.1061/(ASCE)0733-9372(2006)132:7(777)
  • Das P, Mukherjee S, Sen R. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Biores Technol. 2009;100:4887–4890. doi: 10.1016/j.biortech.2009.05.028
  • Gnanamani A, Kavitha V, Radhakrishnan N, et al. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B: Biointerf. 2010;79:334–339. doi: 10.1016/j.colsurfb.2010.04.007
  • Franzetti A, Gandolfi I, Fracchia L, et al. Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In: Kosaric N, Sukan FV, editors. Biosurfactants: production and utilization—processes, technologies, and economics. Boca Raton, FL: CRC Press; 2014. Chapter 17, p. 361–366.
  • Zouboulis AI, Matis KA, Lazaridis NK, et al. The use of biosurfactants in flotation: application for the removal of metal ions. Minerals Eng. 2003;16:1231–1236. doi: 10.1016/j.mineng.2003.06.013
  • Chen WJ, Hsiao LC, Chen KKY. Metal desorption from copper(II)/nickel(II)- spiked kaolin as a soil component using plant-derived saponin biosurfactant. Process Biochem. 2008;43:488–498. doi: 10.1016/j.procbio.2007.11.017
  • Rufino RD, Rodrigues GIB, Campos-Takaki GM, et al. Application of a yeast biosurfactant in the removal of heavy metals and hydrophobic contaminant in a soil used as slurry barrier. Appl Environ Soil Sci. 2011. Article ID 939648, doi:10.1155/2011/939648.
  • Rufino RD, Luna JM, Campos-Takaki GM, et al. Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals. Chem Eng Trans. 2012;27:61–66.
  • Mulligan CN, Oghenekevwe C, Fukue M, et al. Biosurfactant enhanced remediation of a mixed contaminated soil and metal contaminated sediment. Paper presented at Geoenvironmental Engineering Seminar. 7th Meeting; 2007 May 19–24; Japan–Korea–France.
  • Song SS, Zhu LZ, Zhou WJ. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. Environ Poll. 2008;156:1368–1370. doi: 10.1016/j.envpol.2008.06.018
  • Yuan XZ, Meng YT, Zwng GM, et al. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids Surf A: Physicochem Eng Aspects. 2008;317:256–261. doi: 10.1016/j.colsurfa.2007.10.024
  • Maity JP, Huang YM, Hsu C-M, et al. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: a comparative effectiveness assessment. Chemosphere. 2013;92:1286–1293. doi: 10.1016/j.chemosphere.2013.04.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.