175
Views
9
CrossRef citations to date
0
Altmetric
Articles

The addition of FeOOH binds phosphate in organic matter-rich sediments

, &
Pages 432-445 | Received 07 Jun 2015, Accepted 01 Feb 2016, Published online: 29 Feb 2016

References

  • Dalkiran N, Karacaogˇlu D, Dere Ş, Şentürk E, Torunogˇlu T. Factors affecting the current status of a eutrophic shallow lake (Lake Uluabat, Turkey): relationships between water physical and chemical variables. Chem Ecol. 2006;22:279–298. doi: 10.1080/02757540600856229
  • Conley DJ, Paerl HW, Howarth RW, et al. Controlling eutrophication: nitrogen and phosphorus. Science. 2009;323:1014–1015. doi: 10.1126/science.1167755
  • Chislock MF, Doster E, Zitomer RA, Wilson A. Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nat Educ Knowl. 2013;4:10.
  • Rozan TF, Taillefert M, Trouwborst RE, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnol Oceanogr. 2002;47:1346–1354. doi: 10.4319/lo.2002.47.5.1346
  • Kleeberg A, Herzog C, Hupfer M. Redox sensitivity of iron in phosphorus binding does not impede lake restoration. Water Res. 2013;47:1491–1502. doi: 10.1016/j.watres.2012.12.014
  • Hansen J, Reitzel K, Jensen HS, Andersen FO. Effects of aluminum, iron, oxygen and nitrate additions on phosphorus release from the sediment of a Danish softwater lake. Hydrobiologia. 2003;492:139–149. doi: 10.1023/A:1024826131327
  • Rothe M, Frederichs T, Eder M, Kleeberg A, Hupfer M. Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach. Biogeosciences. 2014;11:5169–5180. doi: 10.5194/bg-11-5169-2014
  • Jensen HS, Kristensen P, Jeppesen E, Skytthe A. Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia. 1992;235/236:731–743. doi: 10.1007/BF00026261
  • Paerl HW, Xu H, McCarthy MJ, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 2011;45:1973–1983. doi: 10.1016/j.watres.2010.09.018
  • Song N, Yan Z-S, Cai H-Y, Jiang H-L. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia. 2013;714:131–144. doi: 10.1007/s10750-013-1529-2
  • Shen Q, Zhou Q, Shang J, Shao S, Zhang L, Fan C. Beyond hypoxia: occurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake. J Environ Sci. 2014;26:281–288. doi: 10.1016/S1001-0742(13)60452-0
  • Zhu G, Wang F, Zhang Y, Gao G, Qin B. Hypoxia and its environmental influences in large, shallow, and eutrophic Lake Taihu, China. Verh Int Verein Limnol. 2008;30:361–365.
  • Cai HY, Yan ZS, Wang AJ, Krumholz LR, Jiang HL. Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic Lake Taihu reveals the importance of Planctomycetes. Microb Ecol. 2013;66:73–83. doi: 10.1007/s00248-013-0224-1
  • Shao KQ, Gao G, Chi KX, et al. Decomposition of Microcystis blooms: implications for the structure of the sediment bacterial community, as assessed by a mesocosm experiment in Lake Taihu, China. J Basic Microb. 2013;53:549–554. doi: 10.1002/jobm.201100532
  • Gunnars A, Blomqvist S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry. 1997;37:203–226. doi: 10.1023/A:1005744610602
  • Barko JW, SMART RM. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biol. 1980;10:229–238. doi: 10.1111/j.1365-2427.1980.tb01198.x
  • He X, Ren L, Lin Y, et al. Dynamics of water-extractable phosphorus during the degradation of Microcystis aeruginosa by four bacteria species. Ecol Eng. 2009;35:570–575. doi: 10.1016/j.ecoleng.2008.05.010
  • Hu WP, Jorgensen SE, Zhang FB. A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecol Model. 2006;190:367–398. doi: 10.1016/j.ecolmodel.2005.02.024
  • Qin BQ, Zhu GW, Gao G, et al. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manage. 2010;45:105–112. doi: 10.1007/s00267-009-9393-6
  • Qin BQ, Xu PZ, Wu QL, Luo LC, Zhang YL. Environmental issues of Lake Taihu, China. Hydrobiologia. 2007;581:3–14. doi: 10.1007/s10750-006-0521-5
  • Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36. doi: 10.1016/S0003-2670(00)88444-5
  • Andersen J. An ignition method for determination of total phosphorus in lake sediments. Water Res. 1976;10:329–331. doi: 10.1016/0043-1354(76)90175-5
  • Rydin E, Welch EB. Aluminum dose required to inactivate phosphate in lake sediments. Water Res. 1998;32:2969–2976. doi: 10.1016/S0043-1354(98)00055-4
  • Lovley DR, Phillips EJP. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microb. 1987;53:1536–1540.
  • Hsieh YP, Shieh YN. Analysis of reduced inorganic sulfur by diffusion methods: improved apparatus and evaluation for sulfur isotopic studies. Chem Geol. 1997;137:255–261. doi: 10.1016/S0009-2541(96)00159-3
  • Ulrich GA, Krumholz LR, Suflita JM. A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl Environ Microb. 1997;63:1627–1630.
  • Algesten G, Sobek S, Bergström A-K, Jonsson A, Tranvik LJ, Jansson M. Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes. Microb Ecol. 2005;50:529–535. doi: 10.1007/s00248-005-5007-x
  • Nielsen T, Andersen FØ. Phosphorus dynamics during decomposition of mangrove (Rhizophora apiculata) leaves in sediments. J Exp Mar Biol Ecol. 2003;293:73–88. doi: 10.1016/S0022-0981(03)00200-4
  • Li H, Xing P, Chen M, Bian Y, Wu QL. Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms. Water Res. 2011;45:1702–1710. doi: 10.1016/j.watres.2010.11.011
  • Chen M, Ye T-R, Krumholz LR, Jiang H-L. Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments. PloS one. 2014;9(3):e93130,1–10.
  • Du S, Shentu J, Luo B, et al. Facilitation of phosphorus adsorption onto sediment by aquatic plant debris. J Hazard Mater. 2011;191:212–218. doi: 10.1016/j.jhazmat.2011.04.067
  • Leschine SB. Cellulose degradation in anaerobic environments. Annu Rev Microbiol. 1995;49:399–426. doi: 10.1146/annurev.mi.49.100195.002151
  • Lovley DR. Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes. Prokaryotes. 2006;2:635–658. doi: 10.1007/0-387-30742-7_21
  • Baldwin DS, Williams J. Differential release of nitrogen and phosphorus from anoxic sediments. Chem Ecol. 2007;23:243–249. doi: 10.1080/02757540701339364
  • Roden EE. Geochemical and microbiological controls on dissimilatory iron reduction. Cr Geosci. 2006;338:456–467. doi: 10.1016/j.crte.2006.04.009
  • Khare N, Hesterberg D, Beauchemin S, Wang SL. XANES determination of adsorbed phosphate distribution between ferrihydrite and boehmite in mixtures. Soil Sci Soc Am J. 2004;68:460–469. doi: 10.2136/sssaj2004.4600
  • Liu YC, Shi HC, Li WL, Hou YL, He MA. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal. Bioresource Technol. 2011;102:4008–4012. doi: 10.1016/j.biortech.2010.11.107
  • Azam HM, Finneran KT. Fe (III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater. Chemosphere. 2014;97:1–9. doi: 10.1016/j.chemosphere.2013.09.032
  • Bentley R, Chasteen TG. Environmental VOSCs-formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere. 2004;55:291–317. doi: 10.1016/j.chemosphere.2003.12.017
  • Lamers LP, Tomassen HB, Roelofs JG. Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol. 1998;32:199–205. doi: 10.1021/es970362f
  • Baldwin DS, Fraser M. Rehabilitation options for inland waterways impacted by sulfidic sediments – a synthesis. J Environ Manage. 2009;91:311–319. doi: 10.1016/j.jenvman.2009.09.006
  • Baldwin DS, Mitchell A. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Water Res. 2012;46:965–974. doi: 10.1016/j.watres.2011.11.065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.