418
Views
18
CrossRef citations to date
0
Altmetric
Articles

Sulphamethazine in poultry manure changes carbon and nitrogen mineralisation in soils

, , , , , , & show all
Pages 899-918 | Received 24 Mar 2016, Accepted 18 Jul 2016, Published online: 02 Aug 2016

References

  • Awad YM, Kim SC, El-Azeem SAM, et al. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ Earth Sci. 2014;71(3):1433–1440. doi: 10.1007/s12665-013-2548-z
  • Kim Y, Jung J, Kim M, Park J, Boxall ABA, Choi K. Prioritizing veterinary pharmaceuticals for aquatic environment in Korea. Environ Toxicol Pharmacol. 2008;26(2):167–176. doi: 10.1016/j.etap.2008.03.006
  • Ok YS, Kim SC, Kim KR, et al. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess. 2011;174:693–701. doi: 10.1007/s10661-010-1625-y
  • Awad YM, Lee SS, Kim SC, Yang JE, Ok YS. Novel approaches to monitoring and remediation of veterinary antibiotics in soil and water: a review. Korean J Environ Agric. 2010;29(4):315–327. doi: 10.5338/KJEA.2010.29.4.315
  • Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 2008;8(1):1–13. doi: 10.1016/j.ecolind.2007.06.002
  • KFDA. Annual report of national antimicrobial resistance management (NARMP). Korea Food Drug Admin. 2006;3:297–313.
  • Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011;214(1–4):163–174. doi: 10.1007/s11270-010-0412-2
  • Ha JI, Hong KS, Song SW, et al. Survey of antimicrobial agents used in livestock and fishes. Korean J Vet Public Health. 2003;27:205–217.
  • Kwon SI, Owens G, Ok YS, et al. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manage. 2011;31(1):39–44. doi: 10.1016/j.wasman.2010.08.018
  • Thiele-Bruhn S, Beck IC. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere. 2005;59(4):457–465. doi: 10.1016/j.chemosphere.2005.01.023
  • Awad YM, Kim KR, Kim SC, et al. Monitoring antibiotic residues and corresponding antibiotic resistance genes in an agroecosystem. J Chem. 2015;501. doi:10.1155/2015/974843.
  • Ding C, He J. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol. 2010;87(3):925–941. doi: 10.1007/s00253-010-2649-5
  • Rysz M, Alvarez PJJ. Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Res. 2004;38(17):3705–3712. doi: 10.1016/j.watres.2004.06.015
  • DeVries SL, Zhang P. Antibiotics and the terrestrial nitrogen cycle: a review. Curr Pollut Rep. 2016;2(1):51–67 doi: 10.1007/s40726-016-0027-3
  • Hamscher G, Sczesny S, Höper H, Nau H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem. 2002;74(7):1509–1518. doi: 10.1021/ac015588m
  • Kotzerke A, Sharma S, Schauss K, et al. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut. 2008;153(2):315–322. doi: 10.1016/j.envpol.2007.08.020
  • El-Mahrouky M, El-Naggar AH, Usman ARA, Al-Wabel MI. Dynamics of CO2 emission and biochemical properties of a sandy calcareous soil amended with conocarpus waste and biochar. Pedosphere. 2015;25(1):46–56. doi: 10.1016/S1002-0160(14)60075-8
  • Usman ARA, Kuzyakov Y, Stahr K. Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water Air Soil Pollut. 2004;158(1):401–418. doi: 10.1023/B:WATE.0000044864.07418.8f
  • Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol. 1996;165(6):359–369. doi: 10.1007/s002030050339
  • Pinna MV, Castaldi P, Deiana P, Pusino A, Garau G. Sorption behavior of sulfamethazine on unamended and manure-amended soils and short-term impact on soil microbial community. Ecotoxicol Environ Saf. 2012;84:234–242. doi: 10.1016/j.ecoenv.2012.07.006
  • Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual. 2007;36(4):1224–1230. doi: 10.2134/jeq2006.0266
  • Lee SB, Lee CH, Jung KY, Park KD, Lee D, Kim PJ. Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Till Res. 2009;104:227–232. doi: 10.1016/j.still.2009.02.007
  • Nagle GN. The contribution of agricultural erosion to reservoir sedimentation in the Dominican Republic. Water Policy. 2002;3:491–505. doi: 10.1016/S1366-7017(02)00013-2
  • Mikha MM, Rice CW. Tillage and manure effects on soil and aggregate associated carbon and nitrogen. Soil Sci Soc Am J. 2004;68:809–816. doi: 10.2136/sssaj2004.8090
  • Muruganandam S, Israel DW, Robarge WP. Nitrogen transformations and microbial communities in soil aggregates from three tillage systems. Soil Sci Soc Am J. 2010;74:120–129. doi: 10.2136/sssaj2009.0006
  • Sheldrick BH, Wang C. Particle size distribution. Soil sampling and methods of analysis. Boca Raton FL: Can Soc Soil Sci Lewis; 1993. p. 499–511.
  • Veihmeyer FJ, Hendrickson AH. The moisture equivalent as a measure of the field capacity of soils. Soil Sci. 1931;32(3):181–194. doi: 10.1097/00010694-193109000-00003
  • Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29–38. doi: 10.1097/00010694-193401000-00003
  • Sumner ME, Miller WP. Cation exchange capacity and exchange coefficients. In: DL Sparks, AL Page, PA Helmke, RH Loeppert, PN Soltanpour, MA Tabatabai, CT Johnston, ME Sumner, editors. Methods of soil analysis. Part 3- chemical methods. Madison, WI: Am Soc Agron-Soil Sci Soc Am; 1996. p. 1201–1229.
  • Zibilske LM. Carbon mineralization. In: RW Weaver, S Angle, P Bottomley, D Bezdicek, S Smith, A Tabatabai, A Wollum, editor. Methods of soil analysis, part 2, microbiological and biochemical properties. Madison: Soil Sci Soc Am Book Series, vol 5, Soil Sci Soc Am; 1994. p. 835–864.
  • Black CA, Evans DD, Ensminger LE, White JL, Clark FE. Methods of soil analysis (part 1). Madison, WI: Agronomy Monograph No. 9, Am Soc Agron; 1965.
  • Kuzyakov Y, Cheng W. Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant Soil. 2004;263:85–99. doi: 10.1023/B:PLSO.0000047728.61591.fd
  • Van Groenigen KJ, Gorissen A, Six J, et al. Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biol Biochem. 2005;37:497–506. doi: 10.1016/j.soilbio.2004.08.013
  • Anderson TH, Domsch KH. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem. 1993;25(3):393–395. doi: 10.1016/0038-0717(93)90140-7
  • Leita L, De Nobili M, Muhlbachova G, Mondini C, Marchiol L, Zerbi G. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol Fertil Soils. 1995;19(2–3):103–108. doi: 10.1007/BF00336144
  • Vance ED, Brookes PC, Jenkinso DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–707. doi: 10.1016/0038-0717(87)90052-6
  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC. Measurement of soil microbial biomass C by fumigation-extraction – an automated procedure. Soil Biol Biochem. 1990;22(8):1167–1169. doi: 10.1016/0038-0717(90)90046-3
  • Sparks DL. Kinetics of soil chemical processes. San Diego: Academic Press; 1989.
  • Mulvaney RL, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME. Nitrogen-inorganic forms. Methods of soil analysis. Part 3-chemical methods. Madison, Wisconsin: Soil Sci Soc Am Book Series, vol 5, Am Soc Agron, Soil Sci Soc Agron; 1996. p. 1123–1184.
  • Matejovic I. Total nitrogen in plant material determinated by means of dry combustion: a possible alternative to determination by Kjeldahl digestion. Commun Soil Sci Plant Anal. 1995;26(13–14):2217–2229. doi: 10.1080/00103629509369441
  • Owen JS, King HB, Wang MK, Sun HL. Net nitrogen mineralization and nitrification rates in forest soil in northeastern Taiwan. Soil Sci Plant Nutr. 2010;56:177–185. doi: 10.1111/j.1747-0765.2009.00427.x
  • Kim SC, Carlson K. LC–MS 2 for quantifying trace amounts of pharmaceutical compounds in soil and sediment matrices. TrAC Trends Anal Chem. 2005;24(7):635–644. doi: 10.1016/j.trac.2005.04.006
  • Tao XQ, Lu GN, Dang Z, Yang C, Yi XY. A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem. 2007;42(3):401–408. doi: 10.1016/j.procbio.2006.09.018
  • Schutter ME, Dick RP. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J. 2000;64(5):1659–1668. doi: 10.2136/sssaj2000.6451659x
  • Tabatabai MA. Soil enzymes. In: Weaver RW, Bottomley S, Bezdicek P, editors. Methods of soil analysis: Part 2 – microbiological and biochemical properties. Madison: Soil Sci Soc Am Book Series, vol 5, Soil Sci Soc Am; 1994. p. 775–833.
  • Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1998;198(1):97–107. doi: 10.1023/A:1004347701584
  • Ahmad M, Ok YS, Kim BY, et al. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J Environ Manage. 2016;166:131–139. doi: 10.1016/j.jenvman.2015.10.006
  • SAS. SAS/STAT user’s guide, release 9.1. Cary, NC: SAS Institute; 2004.
  • Awad YM, Blagodatskaya E, Ok YS, Kuzyakov Y. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates. Eur J Soil Sci. 2013;64(4):488–499. doi: 10.1111/ejss.12034
  • Murwira HK, Kirchmann H, Swift MJ. The effect of moisture on the decomposition rate of cattle manure. Plant Soil. 1990;122(2):197–199. doi: 10.1007/BF02851975
  • Riffaldi R, Saviozzi A, Levi-Minzi R. Carbon mineralization kinetics as influenced by soil properties. Biol Fertil Soils. 1996;22(4):293–298. doi: 10.1007/BF00334572
  • Liu F, Wu J, Ying GG, Luo Z, Feng H. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl Microbiol Biotechnol. 2012;95(6):1615–1623. doi: 10.1007/s00253-011-3831-0
  • Kaniou S, Pitarakis K, Barlagianni I, Poulios I. Photocatalytic oxidation of sulfamethazine. Chemosphere. 2005;60(3):372–380. doi: 10.1016/j.chemosphere.2004.11.069
  • Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ. Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem. 2007;55(7):2677–2682. doi: 10.1021/jf063709j
  • Atul-Nayyar A, Hamel C, Hanson K, Germida J. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza. 2009;19:239–246. doi: 10.1007/s00572-008-0215-0
  • Seybold CA. Polyacrylamide review: soil conditioning and environmental fate. Commun Soil Sci Plant Anal. 1994;25(11–12):2171–2185. doi: 10.1080/00103629409369180
  • Schutter ME, Dick RP. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J. 2000;64(5):1659–1668. doi: 10.2136/sssaj2000.6451659x
  • Fang H, Han YL, Yin YM, et al. Microbial response to repeated treatments of manure containing sulfadiazine and chlortetracycline in soil. J Environ Sci Health Part B. 2014;49(8):609–615. doi: 10.1080/03601234.2014.911592
  • Chu B, Goyne KW, Anderson SH, Lin CH, Lerch RN. Sulfamethazine sorption to soil: vegetative management, pH, and dissolved organic matter effects. J Environ Qual. 2013;42(3):794–805. doi: 10.2134/jeq2012.0222
  • Ollivier J, Kleineidam K, Reichel R, et al. Effect of sulfadiazine-contaminated pig manure on the abundances of genes and transcripts involved in nitrogen transformation in the root-rhizosphere complexes of maize and clover. Appl Environ Microbiol. 2010;76(24):7903–7909. doi: 10.1128/AEM.01252-10
  • Turner BL, Hopkins DW, Haygarth PM, Ostle N. β-Glucosidase activity in pasture soils. Appl Soil Ecol. 2002;20(2):157–162. doi: 10.1016/S0929-1393(02)00020-3
  • Awad YM, Blagodatskaya E, Ok YS, Kuzyakov Y. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. Eur J Soil Biol. 2012;48:1–10. doi: 10.1016/j.ejsobi.2011.09.005
  • Dilly O, Munch JC. Litter decomposition and microbial characteristics in agricultural soil in Northern, Central, and Southern Germany. Soil Sci Plant Nutr. 2004;50(6):843–853. doi: 10.1080/00380768.2004.10408545
  • Guzman JG, Al-Kaisi M. Landscape position and age of reconstructed prairies effect on soil organic carbon sequestration rate and aggregate associated carbon. J Soil Water Conserv. 2010;65(1):9–21. doi: 10.2489/jswc.65.1.9
  • Goddard MR, Bradford MA. The adaptive response of a natural microbial population to carbon-and nitrogen-limitation. Ecol Lett. 2003;6(7):594–598. doi: 10.1046/j.1461-0248.2003.00478.x
  • García-Galán MJ, Rodríguez-Rodríguez CE, Vicent T, Caminal G, Díaz-Cruz MS, Barceló D. Biodegradation of sulfamethazine by trametes versicolor: removal from sewage sludge and identification of intermediate products by UPLC–QqTOF-MS. Sci Total Environ. 2011;409(24):5505–5512. doi: 10.1016/j.scitotenv.2011.08.022
  • Reichel R, Michelini L, Ghisi R, Thiele-Bruhn S. Soil bacterial community response to sulfadiazine in the soil–root zone. J Plant Nutr Soil Sci. 2015;178:499–506. doi: 10.1002/jpln.201400352
  • Halling-Sørensen B, Sengeløv G, Tjørnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol. 2002;42(3):263–271. doi: 10.1007/s00244-001-0017-2
  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem. 2008;40(7):1583–1591. doi: 10.1016/j.soilbio.2008.01.010
  • Radl V, Welzl G, Albert A, Wilke BM, Amelung W, Schloter M. Drying and rewetting events change the response pattern of nitrifiers but not of denitrifiers to the application of manure containing antibiotic in soil. Appl Soil Ecol. 2015;95:99–106. doi: 10.1016/j.apsoil.2015.06.016
  • Tolls J. Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol. 2001;35(17):3397–3406. doi: 10.1021/es0003021
  • Blackwell PA, Kay P, Boxall ABA. The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere. 2007;67(2):292–299. doi: 10.1016/j.chemosphere.2006.09.095
  • Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut. 2010;158(9):2992–2998. doi: 10.1016/j.envpol.2010.05.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.