156
Views
3
CrossRef citations to date
0
Altmetric
Articles

The effects of alginate microspheres on phytoremediation and growth of Lemna minor in the presence of Cd

, &
Pages 652-668 | Received 10 Jan 2017, Accepted 29 May 2017, Published online: 13 Jun 2017

References

  • Zhou L, Wang Y, Liu Z, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater. 2009;161(2–3):995–1002. doi: 10.1016/j.jhazmat.2008.04.078
  • Li X, Li Y, Ye Z. Preparation of macroporous bead adsorbents based on poly(vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution. Chem Eng J. 2011;178:60–68. doi: 10.1016/j.cej.2011.10.012
  • Fikirdeşici Ergen Ş, Üçüncü Tunca E, Ozkan AD, et al. Interactions between metals accumulated in the narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823) in Dikilitaş Lake, Turkey. Chem Ecol. 2015;31(5):455–465. doi: 10.1080/02757540.2015.1050002
  • Yu J, Tong M, Sun X, et al. A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochem. Eng. J. 2007;33(2):126–133. doi: 10.1016/j.bej.2006.10.012
  • Ngah WS, Fatinathan S. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manage. 2010;91(4):958–969. doi: 10.1016/j.jenvman.2009.12.003
  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, et al. Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Bioch. 2012;58:124–134. doi: 10.1016/j.plaphy.2012.06.018
  • Wali M, Fourati E, Hmaeid N, et al. NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Environ Sci Pollut Res Int. 2015;22(14):10769–10777. doi: 10.1007/s11356-015-4298-9
  • Zhu H, Fu Y, Jiang R, et al. Optimization of copper (II) adsorption onto novel magnetic calcium alginate/maghemite hydrogel beads using response surface methodology. Ind Eng Chem Res. 2014;53(10):4059–4066. doi: 10.1021/ie4031677
  • Dixit R, Wasiullah, Malaviya D, et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sust. 2015;7(2):2189–2212. doi: 10.3390/su7022189
  • Yu K, Ho J, McCandlish E, et al. Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications. Colloids Surf. A. 2013;425:31–41. doi: 10.1016/j.colsurfa.2012.12.043
  • Chen M, Zhang LL, Li J, et al. Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead. Ecotoxicol Environ Saf. 2015;122:313–321. doi: 10.1016/j.ecoenv.2015.08.007
  • Jha VN, Tripathi RM, Sethy NK, et al. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India. Sci Total Environ. 2016;539:175–184. doi: 10.1016/j.scitotenv.2015.08.120
  • Cabral L, Soares CRFS, Giachini AJ, et al. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. J Microbiol Biotechn. 2015;31(11):1655–1664. doi: 10.1007/s11274-015-1918-y
  • Santana NA, Ferreira PAA, Soriani HH, et al. Interaction between arbuscular mycorrhizal fungi and vermicompost on copper phytoremediation in a sandy soil. Appl Soil Ecol. 2015;96:172–182. doi: 10.1016/j.apsoil.2015.08.001
  • Thomas F, Lorgeoux C, Faure P, et al. Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination. Int Biodeter Biodegr. 2016;107:1–9. doi: 10.1016/j.ibiod.2015.11.004
  • Yang Z, Zhang Z, Chai L, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater. 2016;301:145–152. doi: 10.1016/j.jhazmat.2015.08.047
  • Henriques B, Rocha LS, Lopes CB, et al. Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Biochem Eng J. 2015;281:759–770.
  • Upadhyay AK, Singh NK, Singh R, et al. Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol. Environ. Saf. 2016;124:68–73. doi: 10.1016/j.ecoenv.2015.10.002
  • Idris A, Ismail NSM, Hassan N, et al. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J Ind Eng Chem. 2012;18(5):1582–1589. doi: 10.1016/j.jiec.2012.02.018
  • Silva RM, Manso JP, Rodrigues JR, et al. A comparative study of alginate beads and an ion-exchange resin for the removal of heavy metals from a metal plating effluent. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008;43(11):1311–1317. doi: 10.1080/10934520802177953
  • Lagoa R, Rodrigues JR. Kinetic analysis of metal uptake by dry and gel alginate particles. Biochem. Eng. J. 2009;46(3):320–326. doi: 10.1016/j.bej.2009.06.007
  • Ibanez JP, Umetsu Y. Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy. 2002;64:89–99. doi: 10.1016/S0304-386X(02)00012-9
  • Sag Y, Nourbakhsh M, Aksu Z, et al. Comparison of Ca-alginate and immobilized Z. ramigera as sorbents for copper(II) removal. Process Biochem. 1995;30(2):175–181. doi: 10.1016/0032-9592(95)80009-3
  • Sasmaz M, Arslan Topal EI, Obek E, et al. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J Environ Manage. 2015;163:246–253. doi: 10.1016/j.jenvman.2015.08.029
  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, et al. Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation. 2016;18(1):25–32. doi: 10.1080/15226514.2015.1058331
  • Bashan Y, Hernandez J-P, Leyva L, et al. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils. 2002;35(5):359–368. doi: 10.1007/s00374-002-0481-5
  • Mishra SP. Adsorption of Cu and Zn on calcium alginate immobilized Penicillium sp. Indian J Chem Techn. 2013;20:21–25.
  • Bayramoğlu G, Tuzun I, Celik G, et al. Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process. 2006;81(1):35–43. doi: 10.1016/j.minpro.2006.06.002
  • Sudha Bai R, Emilia Abraham T. Studies on chromium(VI) adsorption–desorption using immobilized fungal biomass. Bioresour Technol. 2003;87:17–26. doi: 10.1016/S0960-8524(02)00222-5
  • Wężowicz K, Turnau K, Anielska T, et al. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats. Environ Sci Pollut R. 2015;22(24):19400–19407. doi: 10.1007/s11356-015-5706-x
  • Shen W, Zhu N, Cui J, et al. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicol Environ Saf. 2016;124:120–128. doi: 10.1016/j.ecoenv.2015.10.005
  • Ely A, Baudu M, Basly JP, et al. Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules. J Hazard Mater. 2009;171(1–3):405–409. doi: 10.1016/j.jhazmat.2009.06.015
  • OECD. Guidelines for the testing of chemicals Lemna sp. growth inhibition test. Draft Guideline OECD. 2002:221.
  • Tanhan P, Kruatrachue M, Pokethitiyook P, et al. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere. 2007;68(2):323–329. doi: 10.1016/j.chemosphere.2006.12.064
  • Şengül Ü. Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. J Food Drug Anal. 2016;24(1):56–62. doi: 10.1016/j.jfda.2015.04.009
  • Pietrini F, Bianconi D, Massacci A, et al. Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L. J. Hazard Mater. 2016;309:77–86. doi: 10.1016/j.jhazmat.2016.01.079
  • Ince NH, Dirilgen N, Apikyan IG, et al. Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Arch Environ Contam Toxicol. 1999;36:365–372. doi: 10.1007/PL00006607
  • Juhel G, Batisse E, Hugues Q, et al. Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol. 2011;105(3–4):328–336. doi: 10.1016/j.aquatox.2011.06.019
  • Malec P, Maleva MG, Prasad MNV, et al. Responses of Lemna trisulca L. (duckweed) exposed to low doses of cadmium: thiols, metal binding complexes, and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma. 2010;240(1):69–74. doi: 10.1007/s00709-009-0091-2
  • Poschenrieder C, Cabot C, Martos S, et al. Do toxic ions induce hormesis in plants? Plant Sci. 2013;212:15–25. doi: 10.1016/j.plantsci.2013.07.012
  • Wang LH, Wang FY, Jing XX, et al. Effect of ZnO nanoparticles and inoculation with arbuscular mycorrhizal fungus on growth and nutrient uptake of soybean. Acta Ecol Sin./Shengtai Xuebao. 2015;35(15):5254–5261.
  • Jia L, He X, Chen W, et al. Hormesis phenomena under Cd stress in a hyperaccumulator Lonicera japonica Thunb. Ecotoxicology. 2013;22(3):476–485. doi: 10.1007/s10646-013-1041-5
  • Shen K, Shen C, Lu Y, et al. Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biol Res. 2009;42(2):183–187. doi: 10.4067/S0716-97602009000200006
  • Ucuncu E, Tunca E, Fikirdesici S, et al. Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.). Int J Phytoremediation. 2013;15(4):376–384. doi: 10.1080/15226514.2012.702808
  • Basile A, Sorbo S, Conte B, et al. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int J Phytoremediation. 2012;14(4):374–387. doi: 10.1080/15226514.2011.620653
  • Chaudhuri D, Majumder A, Misra AK, et al. Cadmium removal by Lemna minor and Spirodela polyrhiza. Int J Phytoremediation. 2014;16(11):1119–1132. doi: 10.1080/15226514.2013.821446
  • Monferrán MV, Pignata ML, Wunderlin DA. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper. Environ Pollut. 2012;161:15–22. doi: 10.1016/j.envpol.2011.09.032
  • Demim S, Drouiche N, Aouabed A, et al. Study of heavy metal removal from heavy metal mixture using the CCD method. J Ind Eng Chem. 2014;20(2):512–520. doi: 10.1016/j.jiec.2013.05.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.