217
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

CO2 leakage simulation: effects of the pH decrease on fertilisation and larval development of Paracentrotus lividus and sediment metals toxicity

ORCID Icon, , , &
Pages 1-21 | Received 25 Jul 2017, Accepted 20 Oct 2017, Published online: 06 Nov 2017

References

  • Sabine CL, Feely RA, Gruber N, et al. The oceanic sink for anthropogenic CO2. Science. 2004;305(5682):367–371. doi: 10.1126/science.1097403
  • Caldeira K, Wickett ME. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res. 2005;110(C9):C09S04, 442 pp. doi: 10.1029/2004JC002671
  • IPCC. Special report on carbon dioxide capture and storage. In: Metz B, Davidson O, Coninck HC, Loos M, Meyer LA, editors. Prepared by working group III of the intergovernmental panel on climate change. Cambridge, NY: Cambridge University Press; 2005.
  • Global CCS Institute; 2016. The Global Status of CCS: 2016. Summary Report, Australia. ISBN 978-0-9944115-6-3.
  • Blackford JC. Predicting the impacts of ocean acidification: challenges from an ecosystem perspective. J Mar Syst. 2010;81(1–2):12–18. DOI:10.1016/j.jmarsys.2009.12.016.
  • Blackford JC, Jones N, Proctor R, et al. Regional scale impacts of distinct CO2 additions in the north Sea. Mar Pollut Bull. 2008;56(8):1461–1468. DOI:10.1016/j.marpolbul.2008.04.048.
  • Dewar M, Wei W, McNeil D, et al. Small-scale modelling of the physiochemical impacts of CO2 leaked from sub-seabed reservoirs or pipelines within the north Sea and surrounding waters. Mar Pollut Bull. 2013;73(2):504–515. doi: 10.1016/j.marpolbul.2013.03.005
  • Leung DY, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev. 2014;39:426–443. doi: 10.1016/j.rser.2014.07.093
  • Blackford J, Bull JM, Cevatoglu M, et al. Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS). Int J Greenhouse Gas Control. 2015;38:221–229. DOI:10.1016/j.ijggc.2014.10.004.
  • Blackford J, Stahl H, Bull JM, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nat Clim Change. 2014;4(11):1011–1016. DOI:10.1038/nclimate2381. http://www.nature.com/nclimate/journal/v4/n11/abs/nclimate2381.html#supplementary-information.
  • Denchik N, Pezard PA, Neyens D, et al. Near-surface CO2 leak detection monitoring from downhole electrical resistivity at the CO2 field laboratory, Svelvik Ridge (Norway). Int J Greenhouse Gas Control. 2014;28(0):275–282. DOI:10.1016/j.ijggc.2014.06.033.
  • Jones DG, Barkwith AKAP, Hannis S, et al. Monitoring of near surface gas seepage from a shallow injection experiment at the CO2 field Lab, Norway. Int J Greenhouse Gas Control. 2014;28(0):300–317. DOI:10.1016/j.ijggc.2014.06.021.
  • Blackford JC, Kita J. A novel experimental release of CO2 in the marine environment to Aid monitoring and impact assessment. Energy Procedia. 2013;37:3387–3393. DOI:10.1016/j.egypro.2013.06.227.
  • Atkinson CA, Jolley DF, Simpson SL. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007;69(9):1428–1437. doi: 10.1016/j.chemosphere.2007.04.068
  • Tam NFY, Wong YS. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut. 2000;110(2):195–205. DOI:10.1016/S0269-7491(99)00310-3.
  • Allen HE. The significance of trace metal speciation for water, sediment and soil quality criteria and standards. Sci Total Environ. 1993;134(Suppl 1):23–45. DOI:10.1016/S0048-9697(05)80004-X.
  • Casado-Martínez M, Fernández N, Forja J, et al. Liquid versus solid phase bioassays for dredged material toxicity assessment. Environ Int. 2007;33(4):456–462. doi: 10.1016/j.envint.2006.10.008
  • Byrne RH, Kump LR, Cantrell KJ. The influence of temperature and pH on trace metal speciation in seawater. Mar Chem. 1988;25(2):163–181. DOI:10.1016/0304-4203(88)90062-X.
  • Campbell AL, Mangan S, Ellis RP, et al. Ocean acidification increases copper toxicity to the early life history stages of the polychaete arenicola marina in artificial seawater. Environ Sci Technol. 2014;48(16):9745–9753. doi: 10.1021/es502739m
  • Chapman PM, Wang F. Assessing sediment contamination in estuaries. Environ Toxicol Chem. 2001;20(1):3–22. doi: 10.1002/etc.5620200102
  • Millero FJ, Woosley R, Ditrolio B, et al. Effect of ocean acidification on the speciation of metals in seawater. Oceanography. 2009;22(4):72–85. doi: 10.5670/oceanog.2009.98
  • Basallote M, Rodríguez-Romero A, Blasco J, et al. Lethal effects on different marine organisms, associated with sediment–seawater acidification deriving from CO2 leakage. Environ Sci Pollut Res. 2012;19(7):2550–2560. DOI:10.1007/s11356-012-0899-8.
  • Ishimatsu A, Hayashi M, Lee KS, et al. Physiological effects on fishes in a high-CO2 world. J Geophys Res: Oceans. 2005;110(C9). http://onlinelibrary.wiley.com/doi/10.1029/2004JC002564/pdf. doi: 10.1029/2004JC002564
  • Pörtner HO, Langenbuch M, Reipschläger A. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr. 2004;60(4):705–718. doi: 10.1007/s10872-004-5763-0
  • Yamada Y, Ikeda T. Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biol Ecol. 1999;46(1):62–67.
  • Ries JB, Cohen AL, McCorkle DC. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 2009;37(12):1131–1134. doi: 10.1130/G30210A.1
  • Doney SC, Balch WM, Fabry VJ, et al. Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography. 2009;22(4):16–25. DOI:10.5670/oceanog.2009.93.
  • Dupont S, Ortega-Martínez O, Thorndyke M. Impact of near-future ocean acidification on echinoderms. Ecotoxicol (London, England) 2010;19(3):449–462. doi: 10.1007/s10646-010-0463-6
  • Fabry VJ, Seibel BA, Feely RA, et al. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci: J du Conseil. 2008;65(3):414–432. doi: 10.1093/icesjms/fsn048
  • Whiteley N. Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser. 2011;430:257–271. doi: 10.3354/meps09185
  • Widdicombe S, Spicer JI. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol. 2008;366(1):187–197. doi: 10.1016/j.jembe.2008.07.024
  • Riebesell U, Fabry VJ, Hansson L, et al. Guide to best practices for ocean acidification research and data reporting. Luxembourg: Publications Office of the European Union; 2010.
  • Millero FJ, Sohn ML. Chemical oceanography. Boca Raton: Taylor & Francis Group, CRC Press (1991); 1992.
  • McKim JM. Evaluation of tests with early life stages of fish for predicting long-term toxicity. J Fisheries Res Board Canada. 1977;34(8):1148–1154. doi: 10.1139/f77-172
  • Ishimatsu A, Kikkawa T, Hayashi M, et al. Effects of CO2 on marine fish: Larvae and adults. J Oceanography. 2004;60(4):731–741. doi: 10.1007/s10872-004-5765-y
  • RISCS. A guide to potential impacts of leakage from CO2 storage. Pearce, J, Blackford, J, Beaubien, S, Foekema, E, Gemeni, V, Gwosdz, S, Jones, D, Kirk, K, Lions, J, Metcalfe, R, Moni, C, Smith, K, Steven, M, West, J and Ziogou, F. British Geological Survey. Available from: www.riscs-co2.eu 70 pages 2014
  • Aguirre-Martínez G, Owuor M, Garrido-Pérez C, et al. Are standard tests sensitive enough to evaluate effects of human pharmaceuticals in aquatic biota? Facing changes in research approaches when performing risk assessment of drugs. Chemosphere 2015;120:75–85. doi: 10.1016/j.chemosphere.2014.05.087
  • Carballeira C, De Orte M, Viana I, et al. Assessing the toxicity of chemical compounds associated with land-based marine fish farms: the sea urchin embryo bioassay with Paracentrotus lividus and Arbacia lixula. Arch Environ Contam Toxicol. 2012;63(2):249–261. doi: 10.1007/s00244-012-9769-0
  • Maranho L, Garrido-Pérez M, DelValls T, et al. Suitability of standardized acute toxicity tests for marine sediment assessment: pharmaceutical contamination. Water, Air, Soil Pollut. 2015;226(3):65. doi: 10.1007/s11270-014-2273-6
  • Beiras R, Vázquez E, Bellas J, et al. Sea-urchin embryo bioassay for in situ evaluation of the biological quality of coastal seawater. Estuar Coast Shelf Sci. 2001;52(1):29–32. DOI:10.1006/ecss.2000.0720.
  • DelValls TÁ, Forja JM, Gómez-Parra A. The use of multivariate analysis to link sediment contamination and toxicity data to establish sediment quality guidelines: an example in the gulf of cádiz (Spain). Ciencias Marinas. 1998;24(2):127–154. doi: 10.7773/cm.v24i2.1207
  • Hsieh C-C, Shih C-L, Fang C-C, et al. Carbon dioxide asphyxiation caused by special-effect dry ice in an election campaign. Am J Emerg Med. 2005;23(4):567–568. doi: 10.1016/j.ajem.2005.02.045
  • Ligero R, Casas-Ruiz M, Barrera M, et al. Environmental impact of unleaded gasolines in the bay of cádiz (Spain). Environ Int. 2004;30(1):99–104. doi: 10.1016/S0160-4120(03)00152-1
  • DelValls TÁ, Forja JM, Gómez-Parra A. Integrative assessment of sediment quality in two littoral ecosystems from the Gulf of Cádiz, Spain. Environ Toxicol Chem. 1998;17(6):1073–1084. DOI:10.1002/etc.5620170613.
  • Borrego J, Morales J, De la Torre M, et al. Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (southwestern Spain). Environ Geol. 2002;41(7):785–796. doi: 10.1007/s00254-001-0445-3
  • Olías M, Nieto JM. Background conditions and mining pollution throughout history in the Río tinto (SW Spain). Environments 2015;2(3):295–316. doi: 10.3390/environments2030295
  • Riba I, Casado-Martínez C, Forja JM, et al. Sediment quality in the Atlantic coast of Spain. Environ Toxicol Chem. 2004;23(2):271–282. DOI:10.1897/03-146.
  • Araújo CVM, Diz FR, Laiz I, et al. Sediment integrative assessment of the Bay of cádiz (Spain): An ecotoxicological and chemical approach. Environ Int. 2009;35(6):831–841. doi: 10.1016/j.envint.2009.02.003
  • Vangkilde-Pedersen T, Anthonsen KL, Smith N, et al. Assessing European capacity for geological storage of carbon dioxide – the EU GeoCapacity project. Energy Procedia. 2009;1(1):2663–2670. DOI:10.1016/j.egypro.2009.02.034.
  • De Orte MR, Lombardi AT, Sarmiento AM, et al. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Mar Environ Res. 2014;96(0):136–144. DOI:10.1016/j.marenvres.2013.10.003.
  • Evaluation of dredged material proposed for discharge in waters of the U.S. – Testing Manual. vol EPA/823/B/98-004. US Army Corps of Engineers. United State Environmental Protection Agency. http://water.epa.gov/type/oceb/oceandumping/dredgedmaterial/upload/2009_10_09_oceans_regulatory_dumpdredged_itm_feb1998.pdf, (1998).
  • Guidance document on collection and preparation of sediments for physicochemical characterization and biological testing. Environmental Protetion Services. Otawa, ON. http://publications.gc.ca/pub?id=57184&sl=0, 1994.
  • Beiras R. Comparison of methods to obtain a liquid phase in marine sediment toxicity bioassays with Paracentrotus lividus Sea urchin embryos. Arch Environ Contam Toxicol. 2002;42(1):23–28. DOI:10.1007/s002440010287.
  • McGinnis DF, Schmidt M, DelSontro T, et al. Discovery of a natural CO2 seep in the German North Sea: implications for shallow dissolved gas and seep detection. J Geophys Res: Oceans. 2011;116(C3): C03013. doi: 10.1029/2010JC006557
  • Santana-Casiano JM, González-Dávila M, Fraile-Nuez E, et al. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci Rep. 2013;3:1440. DOI:10.1038/srep01140.
  • Gaudette HE, Flight WR, Toner L, et al. An inexpensive titration method for the determination of organic carbon in recent sediments. J Sed Petrol. 1974;44(1):249–253.
  • El-Rayis. Re-assessment of the titration method for determination of organic carbon in recent sediments. Rapp Comm Int Mer Médit. 1985;29:45–47.
  • Standard test method for particle-size analysis of soils, ASTM International, West Conshohocken, PA, 2007, www.astm.org Atkinson CA, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69 (9):1428–1437, (2007) DOI:10.1016/j.chemosphere.2007.04.068.
  • Gee GW, Or D. 2.4 Particle-size analysis. Methods Soil Anal Part 2. 2002;4(598):255–293.
  • Flemming B. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res. 2000;20(10):1125–1137. doi: 10.1016/S0278-4343(00)00015-7
  • Loring D, Rantala R. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev. 1992;32(4):235–283. doi: 10.1016/0012-8252(92)90001-A
  • Pierrot D, Lewis E, RWallace DW. CO2SYS dos program developed for CO2 system calculations. In: Laboratory ORN, editor. ORNL/CDIAC-105. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center. Department of Energy; 2006.
  • Mehrbach C, Culberson CH, Hawley JE, et al. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr. 1973;18(6):897–907. DOI:10.4319/lo.1973.18.6.0897.
  • Dickson AG, Millero FJ. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap. 1987;34(10):1733–1743. doi: 10.1016/0198-0149(87)90021-5
  • Dickson AG. Standard potential of the (AgCl(s) + 1/2H2 (g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15K. J Chem Thermodyn. 1990;22:113–127. doi: 10.1016/0021-9614(90)90074-Z
  • Ghirardini AV, Novelli AA, Likar B, et al. Sperm cell toxicity test using sea urchin Paracentrotus lividus Lamarck (Echinodermata: Echinoidea): sensitivity and discriminatory ability toward anionic and nonionic surfactants. Environ Toxicol Chem. 2001;20(3):644–651. doi: 10.1002/etc.5620200325
  • Fernández N, Beiras R. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology (London, England) 2001;10(5):263–271. doi: 10.1023/A:1016703116830
  • Ward TJ, Kramer JR, Boeri RL, et al. Chronic toxicity of silver to the sea urchin (Arbacia punctulata). Environ Toxicol Chem. 2006;25(6):1568–1573. doi: 10.1897/05-299R.1
  • Carballeira C, Martín-Díaz L, DelValls T. Influence of salinity on fertilization and larval development toxicity tests with two species of sea urchin. Mar Environ Res. 2011;72(4):196–203. doi: 10.1016/j.marenvres.2011.08.008
  • Spanish Action Levels for dredged material management, (1994).
  • Gattuso JP, Lee K, Rost B, et al. Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P, editors. Guide for best practices in ocean acidification research and data reporting. Luxembourg. Publications Office of the European Union; 2010. p. 41–52.
  • Gledhill DK, White MM, Salisbury JE, et al. Ocean and coastal acidification off New England and Nova Scotia. 2015.
  • Shitashima K, Maeda Y, Sakamoto A. Detection and monitoring of leaked CO2 through sediment, water column and atmosphere in a sub-seabed CCS experiment. Int J Greenhouse Gas Control. 2015;38:135–142. DOI:10.1016/j.ijggc.2014.12.011.
  • Shitashima K, Maeda Y, Koike Y, et al. Natural analogue of the rise and dissolution of liquid CO2 in the ocean. Int J Greenhouse Gas Control. 2008;2(1):95–104. doi: 10.1016/S1750-5836(07)00092-8
  • Taylor P, Lichtschlag A, Toberman M, et al. Impact and recovery of pH in marine sediments subject to a temporary carbon dioxide leak. Int J Greenhouse Gas Control. 2015;38:93–101. DOI:10.1016/j.ijggc.2014.09.006.
  • Range P, Chícharo M, Ben-Hamadou R, et al. Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales? J Exp Mar Biol Ecol. 2011;396(2):177–184. doi: 10.1016/j.jembe.2010.10.020
  • Lichtschlag A, James RH, Stahl H, et al. Effect of a controlled sub-seabed release of CO2 on the biogeochemistry of shallow marine sediments, their pore waters, and the overlying water column. Int J Greenhouse Gas Control. 2014;38:80–92. doi: 10.1016/j.ijggc.2014.10.008
  • Jones DG, Beaubien SE, Blackford JC, et al. Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. Int J Greenhouse Gas Control. 2015;40:350–377. DOI:10.1016/j.ijggc.2015.05.032.
  • Havenhand JN, Buttler F-R, Thorndyke MC, et al. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol. 2008;18(15):R651–R652. doi: 10.1016/j.cub.2008.06.015
  • Kurihara H, Shirayama Y. Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser. 2004;274:161–169. doi: 10.3354/meps274161
  • Moulin L, Catarino AI, Claessens T, et al. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar Pollut Bull. 2011;62(1):48–54. doi: 10.1016/j.marpolbul.2010.09.012
  • Beiras R, Fernández N, Bellas J, et al. Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere. 2003;52(7):1209–1224. doi: 10.1016/S0045-6535(03)00364-3
  • Ghirardini AV, Novelli AA, Losso C, et al. Sea urchin toxicity bioassays for sediment quality assessment in the Lagoon of Venice (Italy). Chem Ecol. 2003;19(2–3):99–111. doi: 10.1080/0275754031000119870
  • Geffard O, Budzinski H, Augagneur S, et al. Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas). Environ Toxicol Chem. 2001;20(7):1605–1611. doi: 10.1002/etc.5620200727
  • Saco-Álvarez L, Durán I, Lorenzo JI, et al. Methodological basis for the optimization of a marine sea-urchin embryo test (SET) for the ecological assessment of coastal water quality. Ecotoxicol Environ Saf. 2010;73(4):491–499. doi: 10.1016/j.ecoenv.2010.01.018
  • Xu X, Li Y, Wang Y, et al. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicol Vitro. 2011;25(1):294–300. doi: 10.1016/j.tiv.2010.09.007
  • Byrne M, Soars N, Selvakumaraswamy P, et al. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar Environ Res. 2010;69(4):234–239. doi: 10.1016/j.marenvres.2009.10.014
  • Martin S, Richier S, Pedrotti M-L, et al. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol. 2011;214(8):1357–1368. doi: 10.1242/jeb.051169
  • Directive 2004/35/CE of the European Parliament and of the Council of 21 April 2004 on environmental liability with regard to the prevention and remedying of environmental damage, (2004).
  • Ardelan MV, Steinnes E. Changes in mobility and solubility of the redox sensitive metals Fe, Mn and Co at the seawater-sediment interface following CO2 seepage. Biogeosciences (online) 2010;7(2):569–583. DOI:10.5194/bg-7-569-2010.
  • Basallote MD, Rodríguez-Romero A, De Orte MR, et al. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves. Aquat Toxicol. 2015;166:63–71. DOI:10.1016/j.aquatox.2015.07.004.
  • De Orte MR, Sarmiento AM, DelValls TÁ, et al. Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals. Mar Pollut Bull. 2014;86(1–2):59–67. DOI:10.1016/j.marpolbul.2014.07.042.
  • Roberts DA, Birchenough SNR, Lewis C, et al. Ocean acidification increases the toxicity of contaminated sediments. Global Change Biol. 2013;19(2):340–351. DOI:10.1111/gcb.12048.
  • Rodríguez-Romero A, Basallote MD, De Orte MR, et al. Simulation of CO2 leakages during injection and storage in sub-seabed geological formations: metal mobilization and biota effects. Environ Int. 2014;68(0):105–117. DOI:10.1016/j.envint.2014.03.008.
  • Ure A, Davidson C. Chemical speciation in the environment. Glasgow: Blackie; 2008.
  • Cappuyns V, Swennen R. The use of leaching tests to study the potential mobilization of heavy metals from soils and sediments: a comparison. Water Air Soil Pollut 2008;191(1–4):95–111. doi: 10.1007/s11270-007-9609-4
  • Kobayashi N, Okamura H. Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects. Chemosphere. 2004;55(10):1403–1412. doi: 10.1016/j.chemosphere.2003.11.052
  • Santana-Casiano JM, González-Dávila M, Millero FJ. The oxidation of Fe (II) in NaCl–HCO3− and seawater solutions in the presence of phthalate and salicylate ions: a kinetic model. Mar Chem. 2004;85(1):27–40. doi: 10.1016/j.marchem.2003.09.001
  • Orte MR D, Sarmiento AM, Basallote MD, et al. Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Sci Total Environ. 2014;470–471(0):356–363. DOI:10.1016/j.scitotenv.2013.09.095.
  • Payan MC, Verbinnen B, Galan B, et al. Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment. Environ Pollut. 2012;162(0):29–39. doi: 10.1016/j.envpol.2011.10.015
  • Hartley W, Edwards R, Lepp NW. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ Pollut. 2004;131(3):495–504. doi: 10.1016/j.envpol.2004.02.017
  • Sarmiento AM, Nieto JM, Olías M, et al. Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Appl Geochem. 2009;24(4):697–714. DOI:10.1016/j.apgeochem.2008.12.025.
  • Morin G, Calas G. Arsenic in soils, mine tailings, and former industrial sites. Elements. 2006;2(2):97–101. doi: 10.2113/gselements.2.2.97
  • Eisler R. Copper hazards to fish, wildlife, and invertebrates: A synoptic review. GEOLOGICAL SURVEY WASHINGTON DC; 1998.
  • Basallote MD, De Orte MR, DelValls TÁ, et al. Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test. Environ Sci Technol. 2014;48(15):8864–8872. DOI:10.1021/es5015373.
  • Chapman PM, Wang F, Janssen C, et al. Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Can J Fisheries Aquat Sci. 1998;55(10):2221–2243. doi: 10.1139/f98-145
  • Calmano W, Hong J, Förstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. 1993.
  • Marín-Guirao L, Lloret J, Marín A, et al. Pulse-discharges of mining wastes into a coastal lagoon: water chemistry and toxicity. Chem Ecol. 2007;23(3):217–231. doi: 10.1080/02757540701339422
  • Accornero A, Manfra L, Salluzzo A, et al. Trace metal pollution in surface marine waters: nearshore concentrations along Apulia and Albania. Chem Ecol. 2004;20(suppl 1):195–203. doi: 10.1080/02757540310001639782
  • Gianguzza P, Agnetta D, Bonaviri C, et al. The rise of thermophilic sea urchins and the expansion of barren grounds in the Mediterranean Sea. Chem Ecol. 2011;27(2):129–134. doi: 10.1080/02757540.2010.547484

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.