429
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Volatile organic compounds of Acacia longifolia and their effects on germination and early growth of species from invaded habitats

, , , &
Pages 126-145 | Received 04 Apr 2017, Accepted 09 Nov 2017, Published online: 07 Dec 2017

References

  • Heil M. Plastic defence expression in plants. Evol Ecol. 2010;24(3):555–569. doi: 10.1007/s10682-009-9348-7
  • Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010;15(3):176–184. doi: 10.1016/j.tplants.2010.01.006
  • Widhalm JR, Jaini R, Morgan JA, et al. Rethinking how volatiles are released from plant cells. Trends Plant Sci. 2015;20(9):545–550. doi: 10.1016/j.tplants.2015.06.009
  • Barney JN, Hay AG, Weston LA. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol. 2005;31(2):247–265. doi: 10.1007/s10886-005-1339-8
  • Barney JN, Sparks JP, Greenberg J, et al. Biogenic volatile organic compounds from an invasive species: impacts on plant–plant interactions. Plant Ecol. 2009;203(2):195–205. doi: 10.1007/s11258-008-9529-4
  • Inderjit EH, Crocoll C, Bajpai D, et al. Volatile chemicals from leaf litter are associated with invasiveness of a neotropical weed in Asia. Ecology. 2011;92(2):316–324. doi: 10.1890/10-0400.1
  • Souza-Alonso P, Cavaleiro C, González L. Ambient has become strained. Identification of Acacia dealbata link volatiles interfering with germination and early growth of native species. J Chem Ecol. 2014;40(9):1051–1061. doi: 10.1007/s10886-014-0498-x
  • Gniazdowska A, Bogatek R. Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiol Plant. 2005;27(3):395–407. doi: 10.1007/s11738-005-0017-3
  • Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem. 1999;33(1):23–88. doi: 10.1023/A:1006127516791
  • Llusià J, Peñuelas J. Pinus halepensis and Quercus ilex terpene emission as affected by temperature and humidity. Biol Plantarum. 1999;42(2):317–320. doi: 10.1023/A:1002185324152
  • Kegge W, Weldegergis BT, Soler R, et al. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. New Phytol. 2013;200(3):861–874. doi: 10.1111/nph.12407
  • Peñuelas J, Llusià J. The complexity of factors driving volatile organic compound emissions by plants. Biol Plant. 2001;44(4):481–487. doi: 10.1023/A:1013797129428
  • Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 2010;15(3):167–175. doi: 10.1016/j.tplants.2009.12.002
  • Paris CI, Llusia J, Peñuelas J. Changes in monoterpene emission rates of Quercus ilex infested by aphids tended by native or invasive Lasius ant species. J Chem Ecol. 2010;36(7):689–698. doi: 10.1007/s10886-010-9815-1
  • Souza-Alonso P, Rodríguez J, González L et al. Here to stay. Recent advances and perspectives about Acacia invasion in Mediterranean areas. Ann Forest Sci. 2017;74(3); 55. DOI:10.1007/s13595-017-0651-0
  • Richardson DM, Rejmánek M. Trees and shrubs as invasive alien species – a global review. Divers Distrib. 2011;17(5):788–809. doi: 10.1111/j.1472-4642.2011.00782.x
  • Griffin AR, Midgley SJ, Bush D, et al. Global uses of Australian acacias–recent trends and future prospects. Divers Distrib. 2011;17(5):837–847. doi: 10.1111/j.1472-4642.2011.00814.x
  • Roux ER. History of the introduction of Australian acacias on the Cape Flats. S Afr J Sci. 1961;57:99–102.
  • Marchante H, Marchante E, Freitas H. Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd: effects at the community level. In: Child LE, Brock JH, Brundu G, et al., editors. Plant invasion: ecological threats and management solutions. Leiden, The Netherlands: Backhuys Publishers; 2003. p. 75–85.
  • Kutiel P, Cohen O, Shoshany M, et al. Vegetation establishment on the southern Israeli coastal sand dunes between the years 1965 and 1999. Landscape Urban Plann. 2004;67(1):141–156. doi: 10.1016/S0169-2046(03)00035-5
  • Alberio C, Comparatore V. Patterns of woody plant invasion in an Argentinean coastal grassland. Acta Oecol. 2014;54:65–71. doi: 10.1016/j.actao.2013.09.003
  • Marchante E, Kjøller A, Struwe S, et al. Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl Soil Ecol. 2008a;40(2):210–217. doi: 10.1016/j.apsoil.2008.04.004
  • Marchante E, Kjøller A, Struwe S, et al. Invasive Acacia longifolia induce changes in the microbial catabolic diversity of sand dunes. Soil Biol Biochem. 2008b;40(10):2563–2568. doi: 10.1016/j.soilbio.2008.06.017
  • Marchante H, Freitas H, Hoffmann JH. Assessing the suitability and safety of a well-known bud-galling wasp, Trichilogaster acaciaelongifoliae, for biological control of Acacia longifolia in Portugal. Biol Control. 2011;56(2):193–201. doi: 10.1016/j.biocontrol.2010.11.001
  • Authority, E.F.S. Risk to plant health in the EU territory of the intentional release of the bud-galling wasp Trichilogaster acaciaelongifoliae for the control of the invasive alien plant Acacia longifolia. EFSA J. 2015;13(4):4079.
  • Shaw R, Schaffner U, Marchante E. The regulation of biological control of weeds in Europe – an evolving landscape. EPPO Bulletin. 2016;46(2):254–258. doi: 10.1111/epp.12308
  • Marchante H, López-Núñez FA, Freitas H et al. First report of the establishment of the biocontrol agent Trichilogaster acaciaelongifoliae for control of invasive Acacia longifolia in Portugal. EPPO Bulletin. 2017; 47(2);274–278. doi: 10.1111/epp.12373
  • Morais MC, Panuccio MR, Muscolo A, et al. Does salt stress increase the ability of the exotic legume Acacia longifolia to compete with native legumes in sand dune ecosystems? Environ Exp Bot. 2012;82:74–79. doi: 10.1016/j.envexpbot.2012.03.012
  • Morais MC, Panuccio MR, Muscolo A, et al. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. Plant Physiol Biochem. 2012b;55:60–65. doi: 10.1016/j.plaphy.2012.03.013
  • Rascher KG, Große-Stoltenberg A, Máguas C, et al. Acacia longifolia invasion impacts vegetation structure and regeneration dynamics in open dunes and pine forests. Biol Invasions. 2011a;13(5):1099–1113. doi: 10.1007/s10530-011-9949-2
  • Marchante H, Marchante E, Freitas H, et al. Temporal changes in the impacts on plant communities of an invasive alien tree, Acacia longifolia. Plant Ecol. 2015;216(11):1481–1498. doi: 10.1007/s11258-015-0530-4
  • Rascher KG, Große-Stoltenberg A, Máguas C, et al. Understory invasion by Acacia longifolia alters the water balance and carbon gain of a Mediterranean pine forest. Ecosystems. 2011;14(6):904–919. doi: 10.1007/s10021-011-9453-7
  • Hellmann C, Sutter R, Rascher KG, et al. Impact of an exotic N2-fixing Acacia on composition and N status of a native Mediterranean community. Acta Oecol. 2011;37(1):43–50.
  • Stellatelli OA, Vega LE, Block C, et al. Effects of tree invasion on the habitat use of sand lizards. Herpetologica. 2013;69(4):455–465. doi: 10.1655/HERPETOLOGICA-D-12-00033
  • Correia M, Castro S, Rodríguez-Echeverría S. Reproductive success of Acacia longifolia (Fabaceae, Mimosoideae) in native and invasive populations. Aust J Bot. 2015;63(5):387–391. doi: 10.1071/BT14318
  • Fourie S. Composition of the soil seed bank in alien-invaded grassy fynbos: potential for recovery after clearing. S Afr J Bot. 2008;74(3): 445–453. doi: 10.1016/j.sajb.2008.01.172
  • Kegge W, Pierik R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 2010;15(3);126–132. doi: 10.1016/j.tplants.2009.11.007
  • Araniti F, Lupini A, Sunseri F, et al. Allelopatic potential of Dittrichia viscosa (L.) W. Greuter mediated by VOCs: a physiological and metabolomic approach. PloS One. 2017;12(1): e0170161. doi: 10.1371/journal.pone.0170161
  • Chiapusio G, Sanchez AM, Reigosa MJ, et al. Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol. 1997;23(11): 2445–2453. doi: 10.1023/B:JOEC.0000006658.27633.15
  • Upadhyaya A, Sankhla D, Davis TD, et al. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol. 1985;121(5):453–461. doi: 10.1016/S0176-1617(85)80081-X
  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analls Biochem. 1971;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–207. doi: 10.1007/BF00018060
  • Hodges DM, Delong JM, Forney CF, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999; 207(4): 604–611. doi: 10.1007/s004250050524
  • McLafferty W. Wiley registry of mass spectral data 9th/NIST 08. Mass Spectral Library; 2009.
  • Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. (No. Ed. 4). Carol Stream (IL): Allured publishing corporation; 2007.
  • Joulain D, König WA. The atlas of spectral data of sesquiterpene hydrocarbons. Hamburg: EB-Verlag; 1998.
  • Linstrom PJ, Mallard WG, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. [cited 2015 Nov 13]. Available from: http://webbook.nist.gov
  • Eom SH, Yang HS, Weston LA. An evaluation of the allelopathic potential of selected perennial groundcovers: foliar volatiles of catmint (Nepeta×faassenii) inhibit seedling growth. J Chem Ecol. 2006;32(8):1835–1848.
  • Horiuchi JI, Badri DV, Kimball BA, et al. The floral volatile, methyl benzoate, from snapdragon (Antirrhinum majus) triggers phytotoxic effects in Arabidopsis thaliana. Planta. 2007;226(1):1–10. doi: 10.1007/s00425-006-0464-0
  • Ens EJ, French K, Bremner JB. Evidence for allelopathy as a mechanism of community composition change by an invasive exotic shrub, Chrysanthemoides monilifera spp. rotundata. Plant Soil. 2009;316(1–2):125–137. doi: 10.1007/s11104-008-9765-3
  • Liebman M, Sundberg DN. Seed mass affects the susceptibility of weed and crop species to phytotoxins extracted from red clover shoots. Weed Sci. 2006;54(2):340–345. doi: 10.1614/WS-05-54.2.340a
  • Jassbi AR, Zamanizadehnajari S, Baldwin IT. Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol. 2010;36(12):1398–1407. doi: 10.1007/s10886-010-9885-0
  • Miranda CASF, das Graças Cardoso M, Carvalho MLM, et al. Chemical characterisation and allelopathic potential of essential oils from leaves and rhizomes of white ginger. Rev Ciênc Agron. 2015;46(3):555–562. doi: 10.5935/1806-6690.20150038
  • He H, Song Q, Wang Y, Yu S. Phytotoxic effects of volatile organic compounds in soil water taken from a Eucalyptus urophylla plantation. Plant Soil. 2014;377(1–2):203–215. doi: 10.1007/s11104-013-1989-1
  • Razavi SM, Ravansalar A, Mirinejad S. The investigation on phytochemicals from Ferulago angulata (Schlecht) Boiss, indigenous to central parts of Iran. Nat Prod Res. 2015;29(21):2037–2040. doi: 10.1080/14786419.2015.1017725
  • Singh HP, Batish DR, Kaur S, et al. α-Pinene inhibits growth and induces oxidative stress in roots. Ann Bot. 2006;98(6):1261–1269. doi: 10.1093/aob/mcl213
  • Kordali S, Cakir A, Sutay S. Inhibitory effects of monoterpenes on seed germination and seedling growth. Z Naturforsch C. 2007;62(3–4):207–214. doi: 10.1515/znc-2007-3-409
  • Archbold DD, Hamilton-Kemp TR, Barth MM, et al. Identifying natural volatile compounds that control gray mold (Botrytis cinerea) during postharvest storage of strawberry, blackberry, and grape. J Agric Food Chem. 1997;45(10):4032–4037. doi: 10.1021/jf970332w
  • Gwinn KD, Ownley BH, Greene SE, et al. Role of essential oils in control of Rhizoctonia damping-off in tomato with bioactive monarda herbage. Phytopathol. 2010;100(5):493–501. doi: 10.1094/PHYTO-100-5-0493
  • Oster M, Beck JJ, Furrow RE, et al. In-field yellow starthistle (Centaurea solstitialis) volatile composition under elevated temperature and CO2 and implications for future control. Chemoecol. 2015;25(6):313–323. doi: 10.1007/s00049-015-0200-y
  • Heiden AC, Kobel K, Langebartels C, et al. Emissions of oxygenated volatile organic compounds from plants, part I: emissions from lipoxygenase activity. J Atmos Chem. 2003; 45(2):143–172. doi: 10.1023/A:1024069605420
  • Loreto F, Barta C, Brilli F, et al. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ. 2006;29(9):1820–1828. doi: 10.1111/j.1365-3040.2006.01561.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.