219
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Effects of mutual intercropping on Pb and Zn accumulation of accumulator plants Rumex nepalensis, Lolium perenne and Trifolium repens

, , , , , , , , , & show all
Pages 259-271 | Received 26 Jul 2017, Accepted 10 Jan 2018, Published online: 19 Jan 2018

References

  • Cheng CL, Liao M, Huang CY. Effect of combined pollution by heavy metals from on soil enzymatic activities in areas polluted by tailing Pb-Zn-Ag mine. J Environ Sci. 2005;4(17):637–640.
  • Modis K, Vatalis KI. Assessing the risk of soil pollution around an industrialized mining region using a geostatistical approach. Soil Sediment Contam. 2014;23(1):63–75. doi: 10.1080/15320383.2013.777393
  • Liang N, Yang LY, Dai JR, et al. Heavy metal pollution in surface water of Linglong gold mining area, China. Procedia Environ Sci. 2011;10:914–917. doi: 10.1016/j.proenv.2011.09.022
  • George-Laurentiu M, Florentina-Cristina M, Andreea-Loreta C. The assessment of social and economic impacts associated to an abandoned mining site case study: Ciudanovita (Romania). Procedia Environ Sci. 2016;32:420–430. doi: 10.1016/j.proenv.2016.03.048
  • Lei DM, Duan CQ. Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping, southwest China. J Environ Sci. 2008;20:1202–1209. doi: 10.1016/S1001-0742(08)62210-X
  • Lu SJ, Wang YY, Teng YG, et al. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan. Environ Monit Assess. 2015;187(10):627. doi: 10.1007/s10661-015-4835-5
  • Bech J, Duran P, Roca N, et al. Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. J Geochem Explor. 2012;123:109–113. doi: 10.1016/j.gexplo.2012.06.021
  • Baycu G, Tolunay D, Ozden H, et al. An abandoned copper mining site in Cyprus and assessment of metal concentrations in plants and soil. Int J Phytoremediat. 2015;17(7):622–631. doi: 10.1080/15226514.2014.922929
  • Yildirim D, Sasmaz A. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey). J Geochem Explor. 2016. doi.org/10.1016/j.gexplo.2016.11.005.
  • Nawab J, Khan S, Shah MT, et al. Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. Int J Phytoremediat. 2015;17(9):801–813. doi: 10.1080/15226514.2014.981246
  • Peng Y. The studies on Pb-Zn accumulation characteristics and physiological mechanism of Rumex nepalensis Spreng. Chengdu: Sichuan Agricultural University; 2014; (in Chinese).
  • Stravinskiene V, Racaite M. Impact of cadmium and zinc on the growth of white clover (Trifolium repens L.) shoots and roots. Pol J Environ Stud. 2014;23(4):1355–1359.
  • Bidar G, Garçon G, Pruvot C, et al. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut. 2007;147(3):546–553. doi: 10.1016/j.envpol.2006.10.013
  • Fuksová Z, Száková J, Balík J, et al. Growth and metal uptake by plants grown in mono- and dual culture in metal-contaminated soils. Soil Sediment Contam. 2010;19(2):188–203. doi: 10.1080/15320380903548458
  • Zhu YY, Chen HR, Fan JH, et al. Genetic diversity and disease control in rice. Nature. 2000;406:707–716.
  • Li CY, He XH, Zhu SS, et al. Crop diversity for yield increase. Plos One. 2009;4(11):e8049. doi: 10.1371/journal.pone.0008049
  • Wang XW, Liu ZF, Zhao B, et al. Effects of intercropping with ryegrass and clover on chromium, copper and nickel accumulations of Pseudostellaria maximowicziana. Environ Sci Tech. 2017;30(1):21–25. (in Chinese).
  • Deng L, Li Z, Wang J, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediat. 2016;18(2):134–140. doi: 10.1080/15226514.2015.1058328
  • Lin LY, Yan XL, Liao XY, et al. Arsenic accumulation in Panax notoginseng monoculture and intercropping with Pteris vittata. Water Air Soil Poll. 2015;226(4):2329. doi: 10.1007/s11270-015-2375-9
  • Yang B, Shu WS, Ye ZH, et al. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere. 2003;52(9):1593–1600. doi: 10.1016/S0045-6535(03)00499-5
  • Hao ZB. Plant physiology experiment. Harbin: Harbin Institute of Technology Press; 2004.
  • Page AL. Methods of soil analysis, part 2: chemical and microbial properties. 2nd ed. Madison, WI: American Association of Agronomy; 1982.
  • Lin LJ, Liao MA, Mei LY, et al. Two ecotypes of hyperaccumulators and accumulators affect cadmium accumulation in cherry seedlings by intercropping. Environ Prog Sustain. 2014;33(4):1251–1257.
  • Jiang CA, Wu QT, Sterckeman T, et al. Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils. Ecol Eng. 2010;36(4):391–395. doi: 10.1016/j.ecoleng.2009.11.005
  • Whiting SN, Leake JR, McGrath SP, et al. Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction. Plant Soil. 2001;237(1):147–156. doi: 10.1023/A:1013365617841
  • Gove B, Hutchinson JJ, Young S, et al. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens. Int J Phytoremediat. 2002;4(4):267–281. doi: 10.1080/15226510208500087
  • Wu QT, Wei ZB, Ouyang Y. Phytoextraction of metal-contaminated soil by Sedum alfredii H: effects of chelator and co-planting. Water Air Soil Poll. 2007;180(1–4):131–139. doi: 10.1007/s11270-006-9256-1
  • Wang Y, Bai S, Wu J, et al. Plumbum/zinc accumulation in seedlings of six afforestation species cultivated in mine spoil substrate. J Trop For Sci. 2015;27(2):166–175.
  • An Y. Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut. 2004;127(1):21–26. doi: 10.1016/S0269-7491(03)00263-X
  • Lima AIG, Pereira SIA, Caldeira GCN, et al. Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot. 2006;55(1–2):149–162. doi: 10.1016/j.envexpbot.2004.10.008
  • Verkleij JAC, Schat H, Shaw AJ. Mechanisms of metal tolerance in higher plants. Heavy Metal Tolerance in Plants Evolutionary Aspects. Boca Raton: CRC Press; 1990.
  • Lin LJ, Liu QH, Shi J, et al. Intercropping different varieties of radish can increase cadmium accumulation in radish. Environ Toxicol Chem. 2014;33(9):1950–1955. doi: 10.1002/etc.2626
  • Tatár E, Mihucz VG, Varga A, et al. Determination of organic acids in xylem sap of cucumber: effect of lead contamination. Microchem J. 1998;58:306–314. doi: 10.1006/mchj.1997.1559
  • Yang YY, Jung JY, Song WY, et al. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 2000;124(3):1019–1026. doi: 10.1104/pp.124.3.1019
  • Shen ZG, Zhao F, McGrath S. Uptake and transport of zinc in the hyperaccumulator Thiaspi caerulescens and the non-hyperaccumulator. Plant Cell Environ. 1997;20:898–906. doi: 10.1046/j.1365-3040.1997.d01-134.x
  • Schickler H, Caspi H. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plantarum. 1999;105(1):39–44. doi: 10.1034/j.1399-3054.1999.105107.x
  • Tripathi P, Tripathi RD, Singh RP, et al. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ Sci Pollut R. 2013;20(2):884–896. doi: 10.1007/s11356-012-1205-5
  • Ma TT, Zhou LQ, Chen LK, et al. Oxytetracycline toxicity and its effect on phytoremediation by Sedum plumbizincicola and Medicago sativa in metal-contaminated soil. J Agr Food Chem. 2016;64(42):8045–8053. doi: 10.1021/acs.jafc.6b02140
  • Bauddh K, Kumar A, Srivastava S, et al. A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard. Arch Agron Soil Sci. 2016;62(6):877–891. doi: 10.1080/03650340.2015.1083554
  • Bankaji I, Caçador I, Sleimi N. Assessing of tolerance to metallic and saline stresses in the halophyte Suaeda fruticosa: the indicator role of antioxidative enzymes. Ecol Indic. 2016;64:297–308. doi: 10.1016/j.ecolind.2016.01.020
  • Eibeltagi HS, Mohamed AA, Rashed MM. Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Not Sci Biol. 2010;2(4):76–82.
  • Van Camp W, Capiau K, Van Montagu M, et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 1996;112(4):1703–1714. doi: 10.1104/pp.112.4.1703
  • Reddy AM, Kumar SG, Jyothsnakumari G, et al. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere. 2005;60(1):97–104. doi: 10.1016/j.chemosphere.2004.11.092

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.