189
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Effects of microbial inoculations and surfactant levels on biologically- and chemically-assisted phytoremediation of lead-contaminated soil by maize (Zea Mays L.)

, , , &
Pages 964-977 | Received 12 Dec 2017, Accepted 29 Aug 2018, Published online: 12 Sep 2018

References

  • Wuana RA, Mbasugh PA. Response of roselle (Hibiscus sabdariffa) to heavy metals contamination in soils with different organic fertilisations. Chem Ecol. 2013;29:437–447. doi: 10.1080/02757540.2013.770479
  • Kabata-Pendias A, Pendias H. Trace elements in soils and plants. 3rd ed. Boca Rotan: CRC Press; 2001.
  • Verma S, Dubey RS. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003;164:645–655. doi: 10.1016/S0168-9452(03)00022-0
  • Mayel S, Ghasemi-Fasaei R, Karimian N, et al. Desorption behaviour of lead in two calcareous soils as affected by Pb level without and with compost supply. Arch Agron Soil Sci. 2014;60:265–274. doi: 10.1080/03650340.2013.773399
  • Bahraminia M, Zarei M, Ronaghi A, et al. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by vetiver grass. Int J Phytprem. 2016;18:730–737. doi: 10.1080/15226514.2015.1131242
  • Goel S, Malik JA, Nayyar H. Molecular approach for phytoremediation of metal-contaminated sites. Arch Agron Soil Sci. 2009;55:451–475. doi: 10.1080/03650340902832861
  • Truua J, Truua M, Espenberga M, et al. Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. The Open Biotechnol J. 2015;9:85–92. doi: 10.2174/1874070701509010085
  • Wuana1 RA, Okieimen FE. Phytoremediation potential of maize (Zea mays L.). A review. Afr J Gen Agric. 2010;6:275–288.
  • Babaeian E, Homaee M, Rahnemaie R. Chelate-enhanced phytoextraction and phytostabilization of lead-contaminated soils by carrot (Daucus carota). Arch Agron Soil Sci. 2016;62:339–358. doi: 10.1080/03650340.2015.1060320
  • Karimi A, Khodaverdiloo H, Rasouli Sadaghiani MH. Fungi and bacteria as helping agents for remediation of a Pb-contaminated soil by Onopordum acanthium. Caspian J Environ Sci. 2017;15:249–262.
  • Karimi A, Khodaverdiloo H, Rasouli Sadaghiani MH. Characterisation of growth and biochemical response of Onopordum acanthium L. under lead stress as affected by microbial inoculation. Chem Ecol. 2017;33:963–976. doi: 10.1080/02757540.2017.1391798
  • Jarrah M, Ghasemi-Fasaei R, Karimian N, et al. Investigation of arbuscular mycorrhizal fungus and EDTA efficiencies on lead phytoremediation by sunflower in a calcareous soil. Bioremed J. 2014;18:71–79. doi: 10.1080/10889868.2013.847401
  • Ghabooli M, Khatabi B, Shahriary Ahmadi F, et al. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Priformospora indica in barley. J Proteomics. 2013;94:289–301. doi: 10.1016/j.jprot.2013.09.017
  • Alhasawi A, Costanzi J, Auger C, et al. Metabolic reconfigurations aimed at the detoxification of a multi metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants. J Biotechnol. 2015;200:38–43. doi: 10.1016/j.jbiotec.2015.01.029
  • Ochoa-Loza FJ, Artiola JF, Maier RM. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual. 2001;30:479–485. doi: 10.2134/jeq2001.302479x
  • Swarnkar V, Agrawal N, Tomar R. Sorption of chromate and arsenate by surfactant modified zerionite (E-SMZ). J Dispersion Sci Technol. 2012; 2001;33:919–927. doi: 10.1080/01932691.2011.580183
  • Kotb MS. Effect of surfactant on adsorption and mobility of lead and cadmium in soils. Egypt J Soil Sci. 2017;57:155–165. doi: 10.21608/ejss.2017.3677
  • Negm NA, Elsharkawy Ali H. Modification of heavy metal uptake efficiency by modified chitosan/anionic surfactant systems. Eng Life Sci. 2010;10:218–224. doi: 10.1002/elsc.200900110
  • Jimenez-Castaneda ME, Medina DI. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water (Basel). 2017;9:235.
  • Adetutu EM, Ball AS, Weber J, et al. Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil. Sci Total Environ. 2012;414:585–591. doi: 10.1016/j.scitotenv.2011.11.044
  • Sun Y, Xu Y, Zhou Q, et al. The potential of gibberellicacid 3 (GA3) and tween-80 induced phytoremediation of co-contamination of Cd and benzo[a]pyrene (B[a]P) using tagetes patula. J Environ Manage. 2013;114:202–220. doi: 10.1016/j.jenvman.2012.09.018
  • Cheng M, Zeng G, Huang D Y, et al. Advantages and challenges of tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem Eng J. 2017;314:98–113. doi: 10.1016/j.cej.2016.12.135
  • Agnello AC, Huguenot D, van Hullebusch ED, et al. Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit Rev Environ Sci Technol. 2014;44:2531–2576. doi: 10.1080/10643389.2013.829764
  • Shafigh M, Ghasemi-Fasaei R, Ronaghi A. Influence of plant growth regulators and humic acid on the phytoremediation of lead by maize in a Pb-polluted calcareous soil. Arch Agron Soil Sci. 2016;62:1733–1740. doi: 10.1080/03650340.2016.1170812
  • Ma Y, Rajkumar M, Zhang C, et al. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag. 2016;174:14–25. doi: 10.1016/j.jenvman.2016.02.047
  • Zubair M, Shakir M, Ali Q, et al. Rhizobacteria and phytoremediation of heavy metals. Environ Technol Rev. 2016;5:112–119. doi: 10.1080/21622515.2016.1259358
  • Soil Survey Staff. Keys to soil taxonomy. Washington (DC): United States Department of Agriculture, Natural Resources Conservation Service; 2014.
  • Bouyoucos GJ. Hydrometer method improved for making particle size analysis of soil. Agron J. 1962;54:464–465. doi: 10.2134/agronj1962.00021962005400050028x
  • Sumner ME, Miller WP. Cation exchange capacity and exchange coefficients. In: Sparks DL, editor. Methods of soil analysis. Madison, WI: Soil Science Society of America; 1996. p. 1201–1229.
  • Nelson DW, Sommers LE. Total carbon, organic carbon and organic matter. In: Sparks DL, editor. Methods of soil analysis. Madison, WI: Soil Science Society of America; 1996. p. 961–1010.
  • Loeppert RH, Suarez DL. Carbonate and gypsum. In: Sparks DL, editor. Methods of soil analysis. Madison, WI: Soil Science Society of America; 1996. p. 437–474.
  • Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and Copper. Soil Sci Soc Am J. 1978;42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x
  • Waller F, Achatz B, Baltruschat H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci. 2005;102:13386–13391. doi: 10.1073/pnas.0504423102
  • Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1989.
  • Gupta PK. Soil, plant, water and fertilizer analysis. New Delhi: Agrobios; 2000.
  • Doumett S, Lamperi L, Checchini L, et al. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere. 2008;72:1481–1490. doi: 10.1016/j.chemosphere.2008.04.083
  • Wang FY, Lin XG, Yin R. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia. 2007;51:99–109. doi: 10.1016/j.pedobi.2007.02.003
  • Bailey KL, Tilton F, Jansik DP, et al. Growth inhibition and stimulation of Shewanella oneidensis MR-1 by surfactants and calcium polysulfide. Ecotoxicol Environ Saf. 2012;80:195–202. doi: 10.1016/j.ecoenv.2012.02.027
  • Agnello AC, Huguenot D, van Hullebusch ED, et al. Phytotoxicity of citric acid and tween 80 for potential use as soil amendments in assisted phytoremediation. Int J Phytorem. 2015;17:669–677. doi: 10.1080/15226514.2014.964837
  • Honga KJ, Choia YK, Tokunagab S, et al. Removal of cadmium and lead from soil using aescin as a biosurfactant. J Surfact Deterg. 1998;1:247–250. doi: 10.1007/s11743-998-0027-1
  • Agnello AC, Huguenot D, van Hullebusch ED, et al. Citric acid- and tween 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environ Sci Pollut Res. 2016;23:9215–9226. doi: 10.1007/s11356-015-5972-7
  • Ozen AS, Yaman M. Phytoextraction of lead and its relationship with histidine in six plant species using ICP-MS and HPLC-MS. Chem Ecol. 2016;32:346–356. doi: 10.1080/02757540.2016.1142979

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.