109
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Variations in δ13C of water–soluble leaf and phloem organic matter of Platycladus orientalis: influences of photosynthetic and post–photosynthetic fractionation

, , , &
Pages 445-458 | Received 16 May 2018, Accepted 11 Dec 2018, Published online: 17 Jan 2019

References

  • Seibt U, Rajabi A, Griffiths H, et al. Carbon isotopes and water–use efficiency, sense and sensitivity. Oecologia. 2008;155:441–454. doi: 10.1007/s00442-007-0932-7
  • Maunoury F, Berveiller D, Lelarge C, et al. Seasonal, daily and diurnal variations in the stable carbon isotope composition of carbon dioxide respired by tree trunks in a deciduous oak forest. Oecologia. 2007;151:268–279. doi: 10.1007/s00442-006-0592-z
  • Badeck FW, Tcherkez G, Nogues S, et al. Post–photosynthetic fractionation of stable carbon isotopes between plant organs–a widespread phenomenon. Rapid Commun Mass Sp. 2005;19:1381–1391. doi: 10.1002/rcm.1912
  • Eglin T, Fresneau C, Lelarge-Trouverie C, et al. Leaf and twig δ13C during growth in relation to biochemical composition and respired CO2. Tree Physiol. 2009;29(6):777–788. doi: 10.1093/treephys/tpp013
  • Cernusak LA, Tcherkez G, Keitel C, et al. Why are non–photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol. 2009;36:199–213. doi: 10.1071/FP08216
  • Hu J, Moore DJP, Riveros-Iregui DA, et al. Modeling whole–tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios. New Phytol. 2010;185(4):1000–1015. doi: 10.1111/j.1469-8137.2009.03154.x
  • Gessler A, Brandes E, Buchmann N, et al. Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree–ring archive. Plant Cell Environ. 2009;32:780–795. doi: 10.1111/j.1365-3040.2009.01957.x
  • Bathellier C, Badeck FW, Couzi P, et al. Divergence in δ13C of dark respired CO2 and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris plants. New Phytol. 2008;177:406–418.
  • Brandes E, Kodama N, Whittaker K, et al. Short–term variation in the isotopic composition of organic matter allocated from the leaves to the stem of Pinus sylvestris, effects of photosynthetic and post–photosynthetic carbon isotope fractionation. Global Change Biol. 2006;12(10):1922–1939. doi: 10.1111/j.1365-2486.2006.01205.x
  • Damesin C, Lelarge C. Carbon isotope composition of current–year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ. 2003;26:207–219. doi: 10.1046/j.1365-3040.2003.00951.x
  • Gessler A, Rennenberg H, Keitel C. Stable isotope composition of organic compounds transported in the phloem of European beech–evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf–to–stem transport. Plant Biology. 2004;6:721–729. doi: 10.1055/s-2004-830350
  • Pons TL, Flexas J, von Caemmerer S, et al. Estimating mesophyll conductance to CO2, methodology potential errors and recommendations. J Exp Bot. 2009;60(8):2217–2234. doi: 10.1093/jxb/erp081
  • Tcherkez G, Farquhar G, Badeck F. Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct Plant Biol. 2004;31:857–877. doi: 10.1071/FP04053
  • Cho MH, Lim H, Shin DH, et al. Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. New Phytol. 2011;190(1):101–112. doi: 10.1111/j.1469-8137.2010.03580.x
  • Turgeon R, Medville R. Phloem loading. A re–evaluation of the relationship between plasmodesmatal frequencies and loading strategies. Plant Physiol. 2004;136:3795–3803. doi: 10.1104/pp.104.042036
  • Peuke AD, Rokitta M, Zimmermann U, et al. Simultaneous measurement of water flow velocity and solute transport in xylem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry. Plant Cell Environ. 2001;24:491–503. doi: 10.1046/j.1365-3040.2001.00704.x
  • Saveyn A, Steppe K, Lemeur R. Daytime depression in tree stem CO2 efflux rates, is it caused by low stem turgor pressure? Ann Bot. 2007;99:477–485. doi: 10.1093/aob/mcl268
  • Steppe K, De Pauw DJW, Lemeur R, et al. A mathematical model linking tree sap flow dynamics to daily stem diameter fldynamics t and radial stem growth. Tree Physiol. 2006;26:257–273. doi: 10.1093/treephys/26.3.257
  • Merchant A, Wild B, Richter A, et al. Compound–specific differences in 13C of soluble carbohydrates in leaves and phloem of 6–month–old Eucalyptus globulus (Labill). Plant Cell Environ. 2011;34:1599–1608. doi: 10.1111/j.1365-3040.2011.02359.x
  • Zhao N, Meng P, He YB, et al. Interaction of CO2 concentrations and water stress in semiarid plants causes diverging response in instantaneous water use efficiency and carbon isotope composition. Biogeoscience. 2017;14:3431–3444. doi: 10.5194/bg-14-3431-2017
  • Schneider S, Gessler A, Weber P, et al. Soluble N compounds in trees exposed to high loads of N, a comparison of spruce (Picea abies), and beech (Fagus sylvatica), grown under field conditions. New Phytol. 1996;134:103–114. doi: 10.1111/j.1469-8137.1996.tb01150.x
  • Bögelein R, Hassdenteufel M, Thomas FM, et al. Comparison of leaf gas exchange and stable isotope signature of water–soluble compounds along canopy gradients of co–occurring Douglas–fir and European beech. Plant Cell Environ. 2012;35(7):1245–1257. doi: 10.1111/j.1365-3040.2012.02486.x
  • Ruehr NK, Offermann CA, Gessler A, et al. Drought effects on allocation of recent carbon, from beech leaves to soil CO2 efflux. New Phytol. 2009;184:950–961. doi: 10.1111/j.1469-8137.2009.03044.x
  • Zimmermann MH, Braun CL. Trees, structure and Function. Berlin: Springer; 1971.
  • Merchant A, Peuke AD, Keitel C, et al. Phloem sap and leaf δ13C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. J Exp Bot. 2010;61:1785–1793. doi: 10.1093/jxb/erq045
  • Gessle A, Keitel C, Kodama N, et al. Δ13c of organic matter transported from the leaves to the roots in Eucalyptus delegatensis, short term variations and relation to respired CO2. Funct Plant Biol. 2007;34:692–706. doi: 10.1071/FP07064
  • Minchin PEH, Thorpe MR. Measurement of unloading and reloading of photo–assimilate within the stem of bean. J Exp Bot. 1987;38:211–220. doi: 10.1093/jxb/38.2.211
  • Van Bel AJE. The phloem, a miracle of ingenuity. Plant Cell Environ. 2003;26:125–149. doi: 10.1046/j.1365-3040.2003.00963.x
  • Deng YW, Tang C, Yuan HC, et al. The δ13C–CO2 pulsing labeling method, distribution of rice photosynthetic carbon in plant–soil systems during different rice growth stages. Acta Ecologica Sinica. 2016;3719:6466–6471.
  • Heizmann U, Kreuzwieser J, Schnitzler JP, et al. Assimilate transport in the xylem sap of Pedunculate Oak (Quercus robur) saplings. Plant Biol. 2001;3:132–138. doi: 10.1055/s-2001-12898
  • Uchida Y, Hunt JE, Barbour MM, et al. Soil properties and presence of plants affect the temperature sensitivity of carbon dioxide production by soils. Plant Soil. 2010;337:375–387. doi: 10.1007/s11104-010-0533-9
  • Werth M, Kuzyakov Y. 13C fractionation at the root–microorganisms–soil interface, a review and outlook for partitioning studies. Soil Biol Biochem. 2010;42:1372–1384. doi: 10.1016/j.soilbio.2010.04.009
  • Gessler A, Tcherkez G, Peuke AD, et al. Experimental evidence for diel variations of the carbon isotope composition in leaf stem and phloem sap organic matter in Ricinus communis. Plant Cell Environ. 2008;31(7):941–953. doi: 10.1111/j.1365-3040.2008.01806.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.