408
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Responses of oxidative stress, genotoxicity and immunotoxicity as biomarkers in Theba pisana snails dietary exposed to silver nanoparticles

ORCID Icon, , , &
Pages 613-630 | Received 03 Jun 2018, Accepted 11 Jun 2019, Published online: 20 Jun 2019

References

  • Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588.
  • Hardman R. Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165–172.
  • Yu S, Liu J. Introduction. In: Liu J, Jiang G, editors. Silver nanoparticles in the environment. Berlin: Springer-Verlag; 2015. p. 1–8. Chapter 1.
  • Klaine SJ, Alvarez PJJ, Batley GE, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27:1825–1851.
  • Wang P, Menzies NW, Dennis PG, et al. Silver nanoparticles entering soils via the wastewater–sludge–soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ. Sci. Technol. 2016;50:8274–8281.
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–839.
  • Lapresta-Fernández A, Fernández A, Blasco J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC, Trends Anal Chem. 2012;32:40–59.
  • Garcia-Velasco N, Pena-Cearra A, Bilbao E, et al. Integrative assessment of the effects produced by Ag nanoparticles at different levels of biological complexity in Eisenia fetida maintained in two standard soils (OECD and LUFA 2.3). Chemosphere. 2017;181:747–758.
  • Galloway TS, Sanger RC, Smith KL, et al. Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays. Environ Sci Technol. 2002;36:2219–2226.
  • Crane M, Handy RD, Garrod J, et al. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology. 2008;17:421–437.
  • Galloway TS, Depledge MH. Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology. 2001;10:5–23.
  • Wessel N, Rousseau S, Caisey X, et al. Investigating the relationship between embryotoxic and genotoxic effects of benzo[a]pyrene, 17 alpha-ethinylestradiol and endosulfan on Crassostrea gigas embryos. Aqua Toxicol. 2007;85:133–142.
  • Bologenesi C, Hayashi M. Micronucleus assay in aquatic animals. Mutagenesis. 2011;26:205–213.
  • Marins AT, Rodrigues CR, Real CC, et al. Integrated biomarkers response confirms the antioxidant role of diphenyl diselenide against atrazine. Ecotoxicol Environ Saf. 2018;151:192–198.
  • Cattaneo R, Moraes BS, Loro VL, et al. Tissue biochemical alterations of Cyprinus carpio exposed to commercial herbicide containing Clomazone under rice-field conditions. Arch Environ Contam Toxicol. 2012;62:97–106.
  • Canty MN, Hagger JA, Moore RTB, et al. Sublethal impact of short term exposure to the organophosphate pesticide azamethiphos in the marine mollusc Mytilus edulis. Mar Poll Bull. 2007;54:396–402.
  • De Vaufleury A, Coeurdassier M, Pandard P, et al. How terrestrial snails can be used in risk assessment of soils. Environ Toxicol Chem. 2006;25:797–806.
  • Radwan MA, El-Gendy KS, Gad AF. Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution. Chemosphere. 2010;79:40–46.
  • Notten MJ, Oosthoek AJ, Rozema J, et al. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ Pollut. 2005;138:178–190.
  • Sidiropoulou E, Feidantsis K, Kalogiannis S, et al. Insights into the toxicity of iron oxides nanoparticles in land snails. Comp Biochem Physiol C. 2018;206-207:1–10.
  • Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A. 2010;369:27–30.
  • Dubey SP, Lahtinen M, Sillanpaa M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Proc Biochem. 2010;45:1065–1071.
  • El-Gendy KS, Radwan MA, Gad AF. Feeding and growth responses of the snail Theba pisana to dietary metal exposure. Arch Environ Contam Toxicol. 2011;60:272–280.
  • Nair V, Turner GE. The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde. Lipids. 1984;19:804–805.
  • Owens WI, Belcher RV. A colorimetric micro-method for the determination of glutathione. Biochem J. 1965;94:705–711.
  • Beers RF J, Sizer IW. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195:133–140.
  • Vessey DA, Boyer TD. Differential activation and inhibition of different forms of rat liver glutathione S-transferase by the herbicides 2,4-dichloro phenoxy acetate (2,4-D) and 2,4,S trichloro phenoxy acetate (2,4, S-T). Toxicol Appl Pharmacol. 1984;73:492–499.
  • Villela IV, Oliveira IM, Silva J, et al. DNA damage and repair in haemolymph cells of golden mussel (Limnoperna fortune) exposed to environmental contaminants. Mutat Res. 2006;697:78–86.
  • Uliasz TF, Hewett SJ. A microtiter trypan blue absorbance assay for quantitative determination of excitoxic neuronal injury in cell culture. J Neurosci Methods. 2000;100:157–163.
  • Pipe RK, Coles JA, Farley SR. Assays for measuring immune response in the mussel Mytilus edulis. Tech Fish Immunol. 1995;4:93–100.
  • Pipe RK, Coles JA, Carissan FMM, et al. Copper induced immunomodulation in the marine mussel Mytilus edulis. Aqua Toxicol. 1999;46:43–54.
  • Ratcliffe NA, Nigam Y, Mello CB, et al. Trypanosoma cruzi erythrocyte agglutinins: a comparative study of occurrence and properties in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol. 1996;83:83–93.
  • Dyrynda EA, Pipe RK, Burt GR, et al. Modulations in the immune defences of mussels (Mytilus edulis) from contaminated sites in the UK. Aquat Toxicol. 1998;42:169–185.
  • Ashida M, Ohnishi E. Activation of pre-phenol oxidase in hemolymph of the silkworm. Archive Biochem Biophys. 1967; 122: 411–416.
  • Chance B, Maehly AC. Assay of catalases and peroxidases. Methods Enzymol. 1955;2:773–775.
  • Rahmankulova K. Kliniceskaja biohimija, Belarus kn. Minsks. 1976;7:218.
  • Lowry OH, Rasebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–275.
  • CoStat program. Microcomputer program analysis, CoHort software, Version 2.6. Monterey, CA; 2002.
  • Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E. 2010;42:1417–1424.
  • Maiti S, Krishnan D, Barman G, et al. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol. 2014;5(40).doi.org/10.1186/s40543-014-0040-3
  • Goudarzi M, Mir N, Mousavi-Kamazani M, et al. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci Rep. 2016;6(32539) doi: 10.1038/srep32539
  • Jeeva K, Thiyagarajan M, Elangovan V, et al. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crops Prod. 2014;52:714–720.
  • McCarthy JF, Shugart LR. Biological markers of environmental contamination. In: McCarthy JF, Shugart LR, editors. Biomarkers of environmental contamination. Boca Raton: Lewis Publishers; 1990. p. 3–16.
  • Khalil AM. Physiological and genotoxic responses of the earthworm Aporrectodea caliginosa exposed to sublethal concentrations of AgNPs. J Basic Appl Zool. 2016;74:8–15.
  • Yang X, Gondikas AP, Marinakos SM, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol. 2011;46:1119–1127.
  • Ringwood AH, Hameedi MJ, Lee RF, et al. Bivalve biomarker workshop: overview and discussion summaries. Biomarkers. 1999;4:391–399.
  • Ali D, Yadav PG, Kumar S, et al. Sensitivity of freshwater pulmonate snail Lymnaea luteola L., to silver nanoparticles. Chemosphere. 2014;104:134–140.
  • Gagné F, Auclair J, Turcotte P, et al. Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. J Toxicol Environ Health A. 2013;76:479–490.
  • DeLeve LD, Kaplowitz N. Glutathione metabolism and its role in hepatotoxicity. Pharmacol Therap. 1991;52:287–305.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Vol. 4. Oxford: Clarendon; 2007.
  • Pen'a-Llopis S, Ferrando MD, Pena JB. Impaired glutathione redox status is associated with decreased survival in two organophosphate-poisoned marine bivalves. Chemosphere. 2002;47:485–497.
  • Canesi L, Fabbri R, Gallo G, et al. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, nano-TiO2, nano-SiO2). Aquat Toxicol. 2010;100:168–177.
  • Ali D. Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnaea luteola L. Biol Trace Elem Res. 2014;162:333–341.
  • McCarthy MP, Carroll DL, Ringwood AH. Tissue specific responses of oysters, Crassostrea virginica to silver nanoparticles. Aquat Toxicol. 2013;138–139:123–128.
  • Gomes T, Pereira CG, Cardoso C, et al. Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis. Mar Environ Res. 2014;101:208–214.
  • Mouneyrac C, Buffet PE, Poirier L, et al. Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ Sci Pollut Res. 2014;21:7899–7912.
  • Buffet PE, Zalouk-Vergnoux A, Châtel A, et al. A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Sci Total Environ. 2014;470–471:1151–1159.
  • Fourie F, Reinecke SA, Reinecke AJ. The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicol Environ Saf. 2007;67:361–368.
  • Chakraborty S, Ray M, Ray S. Toxicity of sodium arsenite in the gill of an economically important mollusc of India. Fish Shellfish Immunol. 2010;29:136–148.
  • Gomes T, Araújo O, Pereira R, et al. Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar Environ Res. 2013;84:51–59.
  • Munari M, Sturve J, Frenzilli G, et al. Genotoxic effects of Ag2S and CdS nanoparticles in blue mussel (Mytilus edulis) haemocytes. Chem Ecol. 2014;30:719–725. doi: 10.1080/02757540.2014.894989
  • Calisi A, Lionetto MG, Giordano ME, et al. Morphometric alterations in Mytilus galloprovincialis granulocytes: a new biomarker. J Environ Toxicol Chem. 2008;27:1435–1441.
  • Matozzo V, Gagné F. Immunotoxicology approaches in ecotoxicology: lessons from mollusks. In: Ballarin L, Cammarata M, editors. Lessons in immunity: from single-cell organisms to mammals. 1st ed. Elsevier, Amsterdam: Academic Press; 2016. p. 29–51. Chapter 3.
  • Hayashi Y, Heckmann LH, Simonsen V, et al. Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida. Ecotoxicol Environ Saf. 2013;98:219–226.
  • Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126:1905–1912.
  • Black MC, Ferrell JR, Horning RC, et al. DNA strand breakage in freshwater mussels (Anodonta grandis) exposed to lead in the laboratory and field. J Environ Toxicol Chem. 1996;15:802–808.
  • Brousseau P, Pellerin J, Morin Y, et al. Flow cytometry as a tool to demonstrate the disturbance of phagocytosis in the clam Mya arenaria following in vitro exposure to heavy metals. Toxicology. 2000;142:145–156.
  • Pipe RK, Coles JA. Environmental contaminants influencing immune function in marine bivalve molluscs. Fish Shellfish Immunol. 1995;5:581–595.
  • Barmo C, Ciacci C, Canonico B, et al. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aqua Toxicol. 2013;132–133:9–18.
  • Katsumiti A, Gilliland D, Arostegui I, et al. Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PLoS One. 2015;10:1–30.
  • Regoli F. Lysosomal responses as a sensitive stress index in biomonitoring heavy metal pollution. Mar Ecol Prog Ser. 1992;84:63–69.
  • Cajaraville MP, Robledo Y, Etxeberria M, et al. Cellular biomarkers as useful tools in the biological monitoring of environmental pollution: molluscan digestive lysosomes. In: Cajaraville MP, editor. Cell biology in environmental Toxicology. Bilbo: University of the Basque Country Press Service; 1995. p. 29–55.
  • Marigómez I, Soto M, Cajaraville MP, et al. Cellular and subcellular distribution of metals in molluscs. Microscope Res Technol. 2002;56:358–392.
  • Regoli F, Nigro M, Orlando E. Lysosomal and antioxidant responses to metals in the Antarctic scallops Adamussium colbecki. Aqua Toxicol. 1998;40:375–392.
  • Russo J, Lefeuvre-Orfila L, Lagadic L. Hemocyte-specific responses to the peroxidizing herbicide fomesafen in the pond snail Lymnaea stagnalis (Gastropoda. Pulmonata). Environ Pollut. 2007;146:420–427.
  • Tedesco S, Doyle H, Blasco J, et al. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol. 2010;100:178–186.
  • Auguste M, Ciacci C, Balbi T, et al. Effects of nanosilver on Mytilus galloprovincialis hemocytes and early embryo development. Aquat Toxicol. 2018;203:107–116.
  • Russo J, Madec L, Brehélin M. Effect of a toxicant on phagocytosis pathways in the freshwater snail Lymnaea stagnalis. Cell Tissue Res. 2008;333:147–158.
  • Rodriguez J, Le Moullac G. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture. 2000;191:109–119.
  • Völker C, Kämpken I, Boedicker C, et al. Toxicity of silver nanoparticles and ionic silver: comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Nanotoxicology. 2015;9:677–685.
  • Cheng W, Wang LU, Chen JC. Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture. 2005;250:592–601.
  • Lowe DM, Fossato VU. The influence of environmental contaminants on lysosomal activity in the digestive cells of mussels (Mytilus edulis) from the Venice Lagoon. Aquat Toxicol. 2000;48:75–85.
  • Suresh K, Mohandas A. Hemolymph acid phosphatase activity pattern in copper-stressed bivalves. J Invert Pathol. 1990;55:118–125.
  • Ciacci C, Canonico B, Bilanicov A, et al. Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One. 2012;7(5):e36937.
  • Burmester T. Evolutionary history and diversity of arthropod hemocyanins. Micron. 2004;35(1–2):121–122.
  • Bislimi K, Behluli A, Halili J, et al. Impact of pollution from Kosova’s power plant in obiliq on some biochemical parameters of the local population of garden snail (Helix pomatia L.). Resour Environ. 2013;3:15–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.