252
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Geographical distribution and risk assessment of heavy metals: a case study of mine tailings pond

ORCID Icon, , , , , , & show all
Pages 1-15 | Received 22 Jun 2019, Accepted 01 Oct 2019, Published online: 04 Nov 2019

References

  • Hou D, O'Connor D, Nathanail P, et al. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environ Pollut. 2017;231(Pt 1):1188–1200. doi: 10.1016/j.envpol.2017.07.021
  • Hou D, Li F. Complexities surrounding China's soil action plan. Land Degrad Dev. 2017;28(7):2315–2320. doi: 10.1002/ldr.2741
  • Liang Y, Yi X, Dang Z, et al. Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. Int J Environ Res Public Health. 2017;14(12):1557.
  • Liu R, Liu J, Zhang Z, et al. Accidental water pollution risk analysis of mine tailings ponds in Guanting Reservoir Watershed, Zhangjiakou City, China. Int J Environ Res Public Health. 2015;12(12):15269–15284. doi: 10.3390/ijerph121214983
  • Zhang L, Liao Q, Shao S, et al. Heavy metal pollution, fractionation, and potential ecological risks in sediments from Lake Chaohu (Eastern China) and the surrounding rivers. Int J Environ Res Public Health. 2015;12(11):14115–14131. doi: 10.3390/ijerph121114115
  • Song J, Yang X, Zhang J, et al. Assessing the variability of heavy metal concentrations in liquid–solid two-phase and related environmental risks in the Weihe River of Shaanxi Province, China. Int J Environ Res Public Health. 2015;12(7):8243–8262. doi: 10.3390/ijerph120708243
  • Zhang M, Huang F, Wang G, et al. Geographic distribution of cadmium and its interaction with the microbial community in the Longjiang River: risk evaluation after a shocking pollution accident. Sci Rep. 2017;7(1):227. doi: 10.1038/s41598-017-00280-y
  • Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169.
  • Wen J, Zhang M, Liu X, et al. Geographical distribution, chemical speciation and risk assessment of heavy metals in Ting River: the influence of heap bioleaching plant on the nearby river. Fresen Environ Bull. 2018;27(5):2844–2852.
  • Zhang M, Liu X, Li Y, et al. Microbial community and metabolic pathway succession driven by changed nutrient inputs in tailings: effects of different nutrients on tailing remediation. Sci Rep. 2017;7(1):474. doi: 10.1038/s41598-017-00580-3
  • Muller G. Index of geoaccumulation in sediments of the Rhine River. Geojournal. 1969;2:108–118.
  • Wei F, Chen J, Wu Y. Background element values in soils of China. Beijing: China Environmental Science Press; 1990.
  • Wong KW, Yap CK, Nulit R, et al. Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river. Environ Sci Pollut Res Int. 2017;24(1):116–134. doi: 10.1007/s11356-016-7951-z
  • Xu L, Wang T, Wang J, et al. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere. 2017;173:61–68. doi: 10.1016/j.chemosphere.2017.01.046
  • Sinclair L, Osman OA, Bertilsson S, et al. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS One. 2015;10(2):e0116955. doi: 10.1371/journal.pone.0116955
  • Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov 1;27(21):2957–2963. doi: 10.1093/bioinformatics/btr507
  • Lawley B, Tannock GW. Analysis of 16S rRNA Gene Amplicon sequences using the QIIME software package. Methods Mol Biol. 2017;1537:153–163. doi: 10.1007/978-1-4939-6685-1_9
  • Haas BJ, Gevers D, Earl AM, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011 Mar;21(3):494–504. doi: 10.1101/gr.112730.110
  • Li W, Fu L, Niu B, et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinformatics. 2012;13(6):656–668. doi: 10.1093/bib/bbs035
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303
  • Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. doi: 10.1093/bioinformatics/btl158
  • Wang Q, Garrity GM, Tiedje JM, et al. Naïve Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07
  • Li J, Zheng Y, Yan J, et al. Effects of different regeneration scenarios and fertilizer treatments on soil microbial ecology in reclaimed opencast mining areas on the Loess Plateau, China. PLoS One. 2013;8(5):e63275. doi: 10.1371/journal.pone.0063275
  • Chen SY, Lin JG, Lee CY. Effects of ferric ion on bioleaching of heavy metals from contaminated sediment. Water Sci Technol. 2003;48(8):151–158. doi: 10.2166/wst.2003.0464
  • Nieva NE, Borgnino L, Garcia MG. Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Environ Pollut. 2018;242(Pt A):264–276. doi: 10.1016/j.envpol.2018.06.067
  • Gabarron M, Faz A, Acosta JA. Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. J Environ Manage. 2018;206:192–201. doi: 10.1016/j.jenvman.2017.10.034
  • Barthen R, Karimzadeh L, Grundig M, et al. Glutamic acid leaching of synthetic covellite – a model system combining experimental data and geochemical modeling. Chemosphere. 2018;196:368–376. doi: 10.1016/j.chemosphere.2017.12.138
  • Gabarron M, Faz A, Martinez-Martinez S, et al. Change in metals and arsenic distribution in soil and their bioavailability beside old tailing ponds. J Environ Manage. 2018;212:292–300. doi: 10.1016/j.jenvman.2018.02.010
  • Fan M, Lin Y, Huo H, et al. Microbial communities in riparian soils of a settling pond for mine drainage treatment. Water Res. 2016;96:198–207. doi: 10.1016/j.watres.2016.03.061
  • Marti R, Becouze-Lareure C, Ribun S, et al. Bacteriome genetic structures of urban deposits are indicative of their origin and impacted by chemical pollutants. Sci Rep. 2017;7(1):13219. doi: 10.1038/s41598-017-13594-8
  • Saria L, Shimaoka T, Miyawaki K. Leaching of heavy metals in acid mine drainage. Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association. ISWA. 2006;24(2):134–140.
  • Jing R, Kjellerup BV. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. J Environ Sci. 2018;66:146–154. doi: 10.1016/j.jes.2017.04.035
  • Onireti OO, Lin C, Qin J. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere. 2017;170:161–168. doi: 10.1016/j.chemosphere.2016.12.024
  • Lov A, Sjostedt C, Larsbo M, et al. Solubility and transport of Cr(III) in a historically contaminated soil – evidence of a rapidly reacting dimeric Cr(III) organic matter complex. Chemosphere. 2017;189:709–716. doi: 10.1016/j.chemosphere.2017.09.088
  • Mihajlovic J, Stark HJ, Rinklebe J. Rare earth elements and their release dynamics under pre-definite redox conditions in a floodplain soil. Chemosphere. 2017;181:313–319. doi: 10.1016/j.chemosphere.2017.04.036
  • Shaheen SM, Rinklebe J. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil. J Environ Manage. 2017;186(Pt 2):253–260. doi: 10.1016/j.jenvman.2016.07.060
  • Potysz A, Grybos M, Kierczak J, et al. Metal mobilization from metallurgical wastes by soil organic acids. Chemosphere. 2017;178:197–211. doi: 10.1016/j.chemosphere.2017.03.015
  • Yuan H, Ge T, Wu X, et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Appl Microbiol Biotechnol. 2012;95(4):1061–1071. doi: 10.1007/s00253-011-3760-y
  • Niu ZS, Pan H, Guo XP, et al. Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: abundance, distribution and implications for the bioavailibility of metals. Sci Total Environ. 2018;634:296–304. doi: 10.1016/j.scitotenv.2018.03.345
  • Le Pape P, Battaglia-Brunet F, Parmentier M, et al. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. J Hazard Mater. 2017;321:764–772. doi: 10.1016/j.jhazmat.2016.09.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.