217
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Transformation of lead compounds in the soil-plant system under the influence of Bacillus and Azotobacter rhizobacteria

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 220-235 | Received 03 Apr 2019, Accepted 24 Jan 2020, Published online: 11 Feb 2020

References

  • Zhuang X, Chen J, Shim H, et al. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int. 2007;33(3):406–413. doi: 10.1016/j.envint.2006.12.005
  • Naik MM, Dubey SK. Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotox Environ Safe. 2013;98:1–7. doi: 10.1016/j.ecoenv.2013.09.039
  • Ullah A, Heng S, Munis MFH, et al. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. 2015;117:28–40. doi: 10.1016/j.envexpbot.2015.05.001
  • Khan WU, Ahmad SR, Yasin NA, et al. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. Int J Phytoremediat. 2017;19(6):514–521. doi: 10.1080/15226514.2016.1254154
  • Miki T, Doi H. Leaf phenological shifts and plant-microbe-soil interactions can determine forest productivity and nutrient cycling under climate change in an ecosystem model. Ecol Res. 2016;31(2):263–274. doi: 10.1007/s11284-016-1333-3
  • Mandal D B, Sarkar G ME, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biot. 2006;69:485–492. doi: 10.1007/s00253-005-0179-3
  • Lugtenberg BJ, Kamilova F. Plant growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–556. doi: 10.1146/annurev.micro.62.081307.162918
  • Pavani KV, Kumar NS, Balakrishnan S. Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol. 2012;61(1):61–63. doi: 10.33073/pjm-2012-008
  • Li X, Peng W, Jia Y, et al. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. Chemosphere. 2016;156:228–235. doi: 10.1016/j.chemosphere.2016.04.098
  • Li X, Zhang X, Cui Z. Combined bioremediation for lead in mine tailings by Solanum nigrum L. and indigenous fungi. Chem Ecol. 2017;33(10):932–948. doi: 10.1080/02757540.2017.1394458
  • Vimal SR, Singh JS, Arora NK, et al. Soil-plant-microbe interactions in stressed agriculture management. A review. Pedosphere. 2017;27(2):177–192. doi: 10.1016/S1002-0160(17)60309-6
  • Barea JM. Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nut. 2015;15(2):261–282.
  • Khan MS, Zaidi A, Wani PA, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett. 2009;7:1–19. doi: 10.1007/s10311-008-0155-0
  • Kabata-Pendias A. Trace elements in soil and plants. 4rd edn. Boca Raton: CRC Press Taylor and Francis Group, LLC; 2011.
  • Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999;51:730–750. doi: 10.1007/s002530051457
  • Pukalchik M, Panova M, Karpukhin M, et al. Using humic products as amendments to restore Zn and Pb polluted soil: a case study using rapid screening phytotest endpoint. J Soil Sediment. 2018;18:750–761. doi: 10.1007/s11368-017-1841-y
  • Goyer RA. Lead toxicity: current concerns. Environ Health Perspect. 1993;100:177–187. doi: 10.1289/ehp.93100177
  • Johnson FM. The genetic effects of environmental lead. Mutat Res. 1998;410:123–140. doi: 10.1016/S1383-5742(97)00032-X
  • Sokolova MG, Akimova GP, Vaishlya OB. Effect of phytohormones synthesized by rhyzosphere bacteria on plants. Appl Biochem Micro. 2011;47(3):274–278. doi: 10.1134/S0003683811030148
  • Vaishlya OB, Amyago DM, Guseva NV. Role of Bacillus mucilaginosus at silicon biogeochemical Cycle in a system “soil – plant”. Mineral Mag. 2013;77:2383. doi: 10.1180/minmag.2013.077.5.22
  • Tessier A, Campbell PGC, Bisson M. Sequential extraction procedures for the speciation of particulate trace metals. Anal Chem. 1979;51:844–851. doi: 10.1021/ac50043a017
  • Kuznetsov VA, Shimko GA. Sequential extraction method in geochemical studies. Minsk: Nauka and Tekhnika; 1990; Russian.
  • Guo GL, Zhou QX, Koval PV, et al. Speciation distribution of Cd, Pb, Cu and Zn in contaminated Phaeozem in north-east China using single and sequential extraction procedures. Aus J Soil Res. 2006;44:135–142. doi: 10.1071/SR05093
  • Belogolova GA, Gordeyeva ON, Koval PV, et al. Regularities of the distribution and heavy metal forms in technogenically transformed chernozems of the Southern Angara River Basin and Northeastern China. Eurasian Soil Science. 2009;42(4):394–404. doi: 10.1134/S1064229309040061
  • Ponomareva VV, Plotnikova TA. Humus and soil formation. Leningrad: Nauka; 1980; Russian.
  • Meyers DER, Auchterlonie GJ, Webb RI, Wood B. Uptake and localisation of lead in the root sytem of Brassica juncea. Environ Pollut. 2008;153:323–332. doi: 10.1016/j.envpol.2007.08.029
  • Tabak HH, Lens P, van Hullebusch ED, et al. Developments in bioremediation of soils and sediments polluted with metals and radionuclides – 1. microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Bio Technol. 2005;4:115–156.
  • Belogolova GA, Sokolova MG, Gordeeva ON, et al. Speciation of arsenic and its accumulation by plants from rhizosphere soils under the influence of Azotobacter and Bacillus bacteria. J Geochem Explor. 2015;149:52–58. doi: 10.1016/j.gexplo.2014.11.017
  • Mаnceau A, Marcus MA, Tamura N. Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Applications of synchrotron Radiation in Low-temperature Geochemistry and environmental science. Rev Mineral Geochem. 2002;49:341–428. doi: 10.2138/gsrmg.49.1.341
  • Weng I, Temminghoff EJ, Lofts S, et al. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol. 2002;36:4804–4810. doi: 10.1021/es0200084
  • Boruvka L, Drábek O. Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant Soil Environ. 2011;50(8):339–345. doi: 10.17221/4041-PSE
  • Nelson YM, Lion LW, Shuler ML, et al. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese hydroxides, iron hydroxides, and their mixtures. Environ Sci Technol. 2002;36:421–425. doi: 10.1021/es010907c
  • Beveridge T, Murray R. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 1980;141(2):876–887. doi: 10.1128/JB.141.2.876-887.1980
  • Schultze-Lam S, Fortin D, Davis BS, et al. Mineralization of bacterial surfaces. Chem Geol. 1996;132(1–4):171–181. doi: 10.1016/S0009-2541(96)00053-8
  • Gadd GM. Heavy metal accumulation by bacteria and other microorganisms. Experientia. 1990;46(8):834–840. doi: 10.1007/BF01935534
  • Ford ТE, Mitchell R. Microbial transport of toxic metals. In Environ Microbiology. (Mitсhell R, ed). -N.-Y.: John Wiley-Liss.1992;83–101.
  • Das N, Geetanjali Basak LV, Salam JA, et al. Application of biofilms on remediation of pollutants an overview. J Microbiol Biotechnol Res. 2012;2:783–790.
  • Wang JL, Chen C. Biosorbents for heavy metals removal and their future a review. Biotechnol Adv. 2009;27:195–226. doi: 10.1016/j.biotechadv.2008.11.002
  • Cui X, Wang X, Li Y, et al. Bioleaching of a Complex Co-Ni-Cu sulfide Flotation Concentrate by Bacillus megaterium QM B1551 at neutral pH. Geomicrobiol J. 2016;33(8):734–741. doi: 10.1080/01490451.2015.1085470

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.