207
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Zooplankton response to organic carbon content in a shallow lake covered by macrophytes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 309-326 | Received 29 Jul 2019, Accepted 04 Feb 2020, Published online: 24 Feb 2020

References

  • Scheffer M, van Nes EH. Shallow lakes theory revisited: various alternative regimes driver by climate, nutrients, depth and lake size. Hydrobiologia. 2007;584:455–466. doi: 10.1007/s10750-007-0616-7
  • Lille RA, Budd J. Habitat architecture of Myriophyllum spicatum L. as an index to habitat quality for fish and macroinvertebrates. J Freshwat Ecol. 1992;7:113–125. doi: 10.1080/02705060.1992.9664677
  • Kufel L, Ozimek T. Can Chara control phosphorous cycling in Lake Łuknajno (Poland)? Hydrobiologia. 1994;275/276:277–283. doi: 10.1007/BF00026718
  • Burks LR, Lodge DM, Jeppesen E, et al. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwat Biol. 2002;47:343–365. doi: 10.1046/j.1365-2427.2002.00824.x
  • Meerhoff M, Iglesias C, Teixeira de Mello F, et al. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwat Biol. 2007;52:1009–1021. doi: 10.1111/j.1365-2427.2007.01748.x
  • Fukushima T, Park J, Imai A, et al. Dissolved organic carbon in a eutrophic lake; dynamics, biodegrability and origin. Aquat Sci. 1996;58:139–157. doi: 10.1007/BF00877112
  • Wetzel RG, Søndergaard M. Role of submerged macrophytes for the microbial community and dynamics of dissolved organic carbon in aquatic ecosystems. In: Jeppesen E, Søndergaard M, Christoffersen K, editors. The structuring role of submerged macrophytes in lakes. New York (NY): Springer; 1998. p. 133–149.
  • Hanson PC, Bade DL, Carpenter SR, et al. Lake metabolism: relationship with dissolved organic carbon and phosphorus Limnol. Oceanogr. 2003;48:1112–1119.
  • Read JS, Rose KC. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol Oceanogr. 2013;58:921–931. doi: 10.4319/lo.2013.58.3.0921
  • Wetzel RG. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia. 1992;229:181–198. doi: 10.1007/BF00007000
  • Wetzel RG. Death, detritus and energy flow in aquatic ecosystems. Freshwat Biol. 1995;33:83–89. doi: 10.1111/j.1365-2427.1995.tb00388.x
  • Richardot M, Debroas D, Thouvenot A, et al. Influence of cladoceran grazing activity on dissolved organic matter, enzymatic hydrolysis and bacterial growth. J Plankton Res. 2001;23:1249–1261. doi: 10.1093/plankt/23.11.1249
  • Chróst RJ. Use of 14C-dissolved organic carbon (RDOC) released by algae as a realistic tracer of heterotrophic activity measurements for aquatic bacteria. Arch Hydrobiol Beih Ergebn Limnol. 1984;19:207–214.
  • Vadstein O, Harkjerr BO, Jansen A. Cycling of organic carbon in the photic zone of an eutrophic lake with special reference to heterotrophic bacteria. Limnol Oceanogr. 1989;34:840–855. doi: 10.4319/lo.1989.34.5.0840
  • deMarty M, Prairie YT. In situ dissolved organic carbon (DOC) release by submerged macrophyte-epiphyte communities in southern Quebec lakes. Can J Fish Aquat Sci. 2009;66:1522–1531. doi: 10.1139/F09-099
  • Schriver P, Bøgstrand J, Jeppesen E, et al. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow, eutrophic lake. Freshwat Biol. 1995;33:255–270. doi: 10.1111/j.1365-2427.1995.tb01166.x
  • Jones RC. The effect of submersed aquatic vegetation on phytoplankton and water quality in the tidal Potomac river. Freshwat Biol. 1990;5:279–288.
  • Lauridsen TL, Jeppesen E, Sondergaard M, et al. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. In: Jeppesen E, Søndergaard M, Christoffersen K, editors. The structuring role of submerged macrophytes in lakes. New York (NY): Springer; 1998. p. 233–239.
  • Clark JM, Bottrell SH, Evans CD, et al. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci Total Environ. 2010;408:2768–2775. doi: 10.1016/j.scitotenv.2010.02.046
  • Azam F, Fenchel T, Field JG, et al. The ecological role of water column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–263. doi: 10.3354/meps010257
  • Olsen Y, Andersen T, Gismervik I, et al. Protozoan and metazoan zooplankton-mediated carbon flows in nutrient-enriched coastal planktonic communities. Mar Ecol Prog Ser. 2007;331:67–83. doi: 10.3354/meps331067
  • Geller W, Müller H. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia. 1981;49:316–321. doi: 10.1007/BF00347591
  • Jürgens K. Impact of Daphnia on planktonic microbial food webs. A review. Mar Microbial Food Webs. 1994;8:295–324.
  • Ojala A, Kankaala P, Kairesalo T, et al. Growth of Daphnia longispina L. in a polyhumic lake under various availability of algal, bacterial and detrital food. Hydrobiologia. 1995;315:119–134. doi: 10.1007/BF00033624
  • Bloesch J, Bürgi HR. Changes in phytoplankton and zooplankton biomass and composition reflected by sedimentation. Limnol Oceanogr. 1989;34:1048–1061. doi: 10.4319/lo.1989.34.6.1048
  • Brothers S, Kohler J, Attermeyer K, et al. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol Oceanogr. 2014;59:1388–1398. doi: 10.4319/lo.2014.59.4.1388
  • Jeppesen E, Meerhoff M, Davidson TA, et al. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol. 2014;73:88–111. doi: 10.4081/jlimnol.2014.844
  • Solomon CT, Jones SJ, Weidel BC, et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems. 2015. doi: 10.1007/s10021-015-9848-y
  • Królikowska J. Eutrophication processes in a shallow, macrophyte-dominated lake-species differentiation, biomass and the distribution of submerged macrophytes in Lake Łuknajno (Poland). Hydrobiologia. 1997;342/343:411–416. doi: 10.1023/A:1017055827120
  • Clesceri LS, Greenberg AE, Eaton AD. Standard methods for the examination of water and wastewater. 20th ed. Washington (DC): American Public Health Association; 1998.
  • Aoki S, Fuse Y, Yamada E. Determinations of humic substances and other dissolved organic matter and their effects on the increase of COD in Lake Biwa. Analytical Sci. 2004;20:159–164. doi: 10.2116/analsci.20.159
  • Ejsmont-Karabin J. Empirical equations for biomass calculation of planktonic rotifers. Pol Arch Hydrobiol. 1998;45:513–522.
  • Bottrell H, Duncan A, Gliwicz ZM, et al. A review of some problems in zooplankton production studies. Norw J Zool. 1976;24:419–456.
  • Herzig A. Fundamental requirements of zooplankton. Production studies. Mondsee: Limnological Institute of Austrian Academy of Science; 1984.
  • Kasprzak K, Niedbała W. Wskaźniki biocenotyczne stosowane w badaniach ilościowych [Biocenotic method in quantitaive study]. In: Górny M, Grüm L, editors. Metody stosowane w zoologii gleby [Methods applied in soil zoology]. Warszawa: PWN; 1981. p. 396–146.
  • Brendelberger H. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol Oceanogr. 1991;36:884–894. doi: 10.4319/lo.1991.36.5.0884
  • terBraak CJF, Šmilauer P. CANOCO reference manual and user’s guide to Canoco for windows: software for canonical community ordination (Version 4.5). Ithaca (NY): Microcomputer Power; 2002.
  • Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO. Cambridge: University Press; 2003.
  • terBraak CJF. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology. 1986;67:1167–1179. doi: 10.2307/1938672
  • Reitner B, Herzig A, Herndl GJ. Dynamics in bacterioplankton production in a shallow, temperate lake (Lake Neusiedl, Austria: evidence for dependence on macrophyte production rather than on phytoplankton). Aquat Microb Ecol. 1999;19:245–254. doi: 10.3354/ame019245
  • Kiss MK, Lakatos G, Borics G, et al. Littoral macrophyte–periphyton complexes in two Hungarian shallow waters. Hydrobiologia. 2003;506-509:541–548. doi: 10.1023/B:HYDR.0000008594.48184.ca
  • Barko J, James W. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation and resuspension. In: Jeppesen E, Søndergaard M, Christoffersen K, editors. The structuring role of submerged macrophytes in lakes. New York (NY): Springer; 1998. p. 197–217.
  • Karabin A, Ejsmont-Karabin J, Kornatowska R. Eutrophication processes in a shallow, macrophyte-dominated lake-factors influencing zooplankton structure and density in Lake Łuknajno (Poland). Hydrobiologia. 1997;342/343:401–409. doi: 10.1023/A:1017003810282
  • Bowszys M, Hirsz E, Paturej E. The role of macrophytes in the diurnal distribution of crustacean zooplankton in a littoral of a shallow, macrophyte-dominated lake. EJPAU Top Biol. 2006;9(2):#18. Available from: http://www.ejpau.media.pl/volume9/issue2/art-18.html
  • Wiliamson CE. Invertebrate predation on planktonic rotifers. Hydrobiologia. 1983;104:385–396. doi: 10.1007/BF00045996
  • Stoecker DK, Capuzzo JM. Predation on protozoa: its importance to zooplankton. J Plankton Res. 1990;12:891–908. doi: 10.1093/plankt/12.5.891
  • Hwang S-J, Heath RT. Zooplankton bacterivory at coastal and offshore sites of Lake Erie. J Plankton Res. 1999;21:699–719. doi: 10.1093/plankt/21.4.699
  • Kim H-W, Hwang S-J, Joo G-J. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J Plankton Res. 2000;22:1559–1577. doi: 10.1093/plankt/22.8.1559
  • Gilbert JJ, Bogdan KG. Rotifer grazing: in situ studies on selectivity rates. In: Meyer DG, Strickler JR, editors. Trophic interactions within aquatic ecosystems. Westview (CO): Boulder; 1984. p. 97–133.
  • Work K, Havens KE. Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. J Plankton Res. 2003;10:1301–1307. doi: 10.1093/plankt/fbg092
  • Ejsmont-Karabin J, Karabin A, Kornatowska Z, et al. The effect of zooplankton on phosphorus cycling in a shallow, hard-water and macrophyte-dominated lake. Ekol Pol. 1996;44:259–270.
  • Jaworska B, Kruk M. Temporal changes in the phytoplankton structure in a shallow, macrophyte-dominated lake (Lake Łuknajno, northeastern Poland). Oceanol Hydrobiol Studies. 2007;36(Suppl. 1):213–220.
  • Nõges T, Agasild H, Haberman J, et al. Food webs in Lake Võrtsjärv. In: Haberman J, Raukas A, Pihu E, editors. Lake Võrtsjärv. Tallinn: Estonian Encyclopaedia Publishers; 2004. p. 335–345.
  • Agasild H, Zingel P, Tõnno I, et al. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia. 2007;584:167–177. doi: 10.1007/s10750-007-0575-z
  • Kluijver A, Ning J, Liu Z. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China. Limnol Oceanogr. 2015;60:375–385. doi: 10.1002/lno.10040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.