142
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Geological framework of the Bagnoli-Coroglio coastal zone and continental shelf, Pozzuoli (Napoli) Bay

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 529-549 | Received 31 Jul 2019, Accepted 24 Feb 2020, Published online: 02 Jul 2020

References

  • Carter RWG, Woodroffe CD. Quaternary shoreline morphodynamics. Cambridge: Cambridge Univ. Press; 1995; 539 pp.
  • Trenhaile AS. Coastal dynamics and landforms. Oxford: Clarendon Press; 1997; 382 pp.
  • Woodroffe CD. Coasts: form, process and evolution. Cambridge: Cambridge University Press; 2002.
  • Haslett S. Coastal systems. London: Routledge; 2008.
  • Vail PR. Seismic stratigraphy interpretation procedure. AAPG Stud Geol. 1987;27(1):1–10.
  • Hunt D, Tucker ME. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sediment Geol. 1992;81:1–9.
  • Catuneanu O. Scale in sequence stratigraphy. Mar Pet Geol. 2019;106:128–159.
  • Van Wagoner JC, Posamentier HW, Mitchum RM, et al. An overview of sequence stratigraphy and key definitions. In: Wilgus CK, Hastings BS, Kendall CGS, editors. Sea level changes––an integrated Approach. vol. 42. Broken Arrow (Oklahoma): SEPM Special Publication; 1988. p. 39–45.
  • Allen GP, Posamentier HW. Sequence stratigraphy and facies model of an incised valley fill: the gironde estuary. France SEPM J Sediment Res. 1993;63(3):378–391.
  • Dalrymple RW, Boyd R, Zaitlin BA. History of research, types and internal organization of incised valley systems: introduction to the volume. In: Dalrymple RW, Boyd R, Zaitlin BA, editors. Incised valley systems: origin and sedimentary sequences. Broken Arrow (Oklahoma): SEPM, Special Publication, 51; 1994. p. 3–10.
  • Saito Y. High-resolution sequence stratigraphy of an incised-valley fill in a wave- and fluvial dominated setting: latest pleistocene-holocene examples from Kanto plain of central Japan. Mem Geol Soc Japan. 1995;45:76–100.
  • Nichol SL, Boyd R, Penland S. Sequence stratigraphy of a coastal plain incised valley estuary: Lake Calcasieu, Louisiana. J Sediment Res. 1996;66:847–857.
  • Zhang G, Li C. The fills and stratigraphic sequences in the Qiantangjiang incised paleo-valley, China. J Sediment Res. 1996;66:406–414.
  • Chaumillon E, Proust J-N-, Menier D, et al. Incised-valley morphologies and sedimentary-fills within the inner shelf of the Bay of Biscay (France): a synthesis. J Mar Sys. 2008;72:383–396. 10.1016/j.jmarsys.2007.05.014.
  • Sacchi M, Pepe F, Corradino M, et al. The Neapolitan Yellow Tuff caldera offshore the Campi Flegrei: stratal architecture and kinematic reconstruction during the last 15 kyr. Mar Geol. 2014;354:15–33.
  • Matano F, Sacchi M, Vigliotti M, et al. Subsidence trends of Volturno River Coastal Plain (Northern Campania, Southern Italy) Inferred by SAR interferometry data. Geosciences. 2018;8:8.
  • Ruberti D, Sacchi M, Pepe F, et al. LGM incised valley in a volcanic setting. The northern Campania Plain (Southern Italy). Alpine Mediterr Quat. 2018;31:35–38.
  • Thomas MA, Anderson JB. Sea-level controls on the facies architecture of the Trinity/sabine incised-valley system, Texas continental shelf. In: Boyd R, Zaitlin BA, Dalrymple R, editors. Incised-Valley systems: Origin and sedimentary Sequences. Broken Arrow (Oklahoma): SEPM, Special Publication 51; 1994. p. 63–82.
  • Fisher RV, Smith GA. Sedimentation in volcanic settings. Broken Arrow (Oklahoma): SEPM, Special Publication, 45; 1991.
  • Smith RL, Bailey RA. Resurgence cauldrons. Geol SocAm Mem. 1968;116:613–662.
  • Lipman PW. The roots of ash flow calderas in Western North America: windows into the tops of granitic batholiths. J Geophys Res. 1984;89:8801–8841.
  • Lipman PW. Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. B Volcanol. 1997;59(3):198–218.
  • Newhall CG, Dzurisin D. Historical unrest at large calderas of the World. Washington: U.S. Geological Survey Bulletin 1855; 1988.
  • Cole JW, Milner DM, Spinks KD. Calderas and caldera structures: a review. Earth Sci Rev. 2005;69:1–26.
  • Acocella V. Structural development of calderas: a synthesis from analogue experiments. In: Gottsmann J, Marti J, editors. Caldera volcanism: analysis, modelling and response. Developments in volcanology, 10. Amsterdam: Elsevier; 2008. p. 285–311.
  • Kennedy B, Wilcock J, Stix J. Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas. Bull Volcanol. 2012;74:1833–1847.
  • Johnston EN, Sparks RSJ, Nomikou P, et al. Stratigraphic relations of Santorini's intracaldera fill and implications for the rate of post-caldera volcanism. J Geol Soc London. 2015;172:323–335. doi:10.1144/jgs2013-114.
  • Steinmann L, Spiess V, Sacchi M. The Campi Flegrei caldera (Italy): formation and evolution in interplay with sea-level variations since the Campanian Ignimbrite eruption at 39 ka. J Volcanol Geotherm Res. 2016;327:361–374.
  • Steinmann L, Spiess V, Sacchi M. Post-collapse evolution of a coastal caldera system: Insights from a 3D multichannel seismic survey from the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res. 2018;349:83–98.
  • Di Vito MA, Isaia R, Orsi G, et al. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res. 1999;91(2–4):221–246.
  • Passaro S, Barra M, Saggiomo R, et al. Multi-resolution morpho-bathymetric survey results at the Pozzuoli-Baia underwater archaeological site (Naples, Italy). J Archaeol Sci. 2013;40(2):1268–1278.
  • Iuliano S, Matano F, Caccavale M, et al. Annual rates of ground deformation (1993–2010) at Campi Flegrei, Italy, revealed by Persistent Scatterer Pair (PSP) – SAR interferometry. Int J Remote Sens. 2015;36(24):6160–6191.
  • Marturano A, Isaia R, Aiello G, et al. Complex dome growth at Campi Flegrei Caldera (Italy) in the last 15 ka. J Geophy Res: Solid Earth. 2018. doi:10.1029/2018JB015672.
  • Sacchi M, Alessio G, Aquino I, et al. Risultati preliminari della campagna oceanografica CAFE_07 – Leg 3 nei Golfi di Napoli e Pozzuoli, Mar Tirreno Orientale. Quaderni di Geofisica. 2009;64:3–26.
  • Malinverno A, Ryan WBF. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics. 1986;5(2):227–245.
  • Oldow LS, D'Argenio B, Ferranti L, et al. Large-scale longitudinal extension in the southern Apennines contractional belt, Italy. Geology. 1993;21(12):1123–1126.
  • Sacchi M, Infuso S, Marsella E. Late Pliocene-Early Pleistocene compressional tectonics in offshore Campania (eastern Tyrrenian Sea). Boll Geofis Teor Appl. 1994;36:141–144, 469–482.
  • Ferranti L, Oldow JS, Sacchi M. Pre-Quaternary orogen-parallel extension in the Southern Apennine belt, Italy. Tectonophysics. 1996;260(4):325–347.
  • Sartori R, Torelli L, Zitellini N, et al. Crustal features along a W–E Tyrrhenian transect from Sardinia to Campania margins (Central Mediterranean). Tectonophysics. 2004;383:171–192.
  • Faccenna C, Funiciello F, Civetta L, et al. Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins. In: Beccaluva L, Bianchini G, Wilson M, editor. Cenozoic volcanism in the Mediterranean area: geological society of America special paper, 418. 2007. p. 153–169. doi:10.1130/2007.2418(08).
  • Di Girolamo P, Ghiara MR, Lirer L, et al. Vulcanologia e petrologia dei Campi Flegrei. Bollettino della Società Geologica Italiana. 1984;103:349–413.
  • Lirer L, Luongo G, Scandone R. On the volcanological evolution of Campi Flegrei. EOS, Trans Am Geophys Union. 1987;68:226–234.
  • Rosi M, Sbrana A. The Phlegrean Fields. C.N.R. Quaderni de “La ricerca scientifica”, 175. P, 1987.
  • Pappalardo L, Civetta L, D’Antonio M, et al. Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions. J Volcanol Geotherm Res. 1999;91:141–166.
  • Rolandi G, Bellucci F, Heizler MT, et al. Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol. 2003;79(1–2):3–31.
  • Scarpati C, Perrotta A, Lepore S, et al. Eruptive history of Neapolitan volcanoes: Constraints from 40Ar-39Ar dating. Geol Mag. 2013;150(3):412–425.
  • Deino AL, Orsi G, de Vita S, et al. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res. 2004;133(1–4):157–170.
  • Barberi F, Cassano E, La Torre P, et al. Structural evolution of Campi Flegrei Caldera in light of volcanological and geophysical data. J Volcanol Geotherm Res. 1991;48(1–2):33–49.
  • Scandone R, Bellucci F, Lirer L, et al. The structure of the Campanian Plain and the activity of the Neapolitan volcanoes (Italy). J Volcanol Geotherm Res. 1991;48(1–2):1–31.
  • Scarpati C, Cole P, Perrotta A. The Neapolitan yellow Tuff – a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol. 1993;55:343–356.
  • Wohletz K, Orsi G, De Vita S. Eruptive mechanism of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical and granulometric data. J Volcanol Geotherm Res. 1995;67:263–290.
  • Orsi G, De Vita S, Di Vito M. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res. 1996;74:179–214.
  • Florio G, Fedi M, Cella F, et al. The Campanian Plain and Phlegrean Fields: structural setting from potential field data. J Volcanol Geotherm Res. 1999;91:361–379.
  • Judenherc S, Zollo A. The Bay of Naples (Southern Italy): constraints on the volcanic structures inferred from a dense seismic survey. J Geophys Res. 2004;109:B10312.
  • De Natale G, Troise C, Pingue F, et al. The Campi Flegrei caldera: unrest mechanisms and hazards. Geol Soc Spec Publ. 2006;269:25–45.
  • Dello Iacono D, Zollo A, Vassallo M, et al. Seismic images and rock properties of the very shallow structure of Campi Flegrei caldera (southern Italy). Bull Volcanol. 2009;71:275–284.
  • Insinga D, Calvert AT, Lanphere MA, et al. The Late-Holocene evolution of the Miseno area (southwestern Campi Flegrei) as inferred by stratigraphy, petrochemistry and 40Ar/39Ar geochronology. In: De Vivo B, editor. Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Amsterdam: Elsevier B. V.; 2006. p. 97–124.
  • Fedele L, Insinga DD, Calvert AT, et al. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull Volcanol. 2011;73(9):1323–1336.
  • Di Renzo V, Arienzo I, Civetta L, et al. The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol. 2011;281:227–241.
  • Smith V, Isaia R, Pearce NJG. Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: Implications for eruption history and chronostratigraphic markers. Quat Sci Rev. 2011;30:3638–3660.
  • de Vita S, Orsi G, Civetta L, et al. The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res. 1999;91:269–301.
  • Isaia R, D'Antonio M, Dell'Erba F, et al. The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res. 2004;133(1–4):171–192.
  • D'Oriano C, Poggianti E, Bertagnini A, et al. Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bullettin of Volcanology. 2005;67:601–621.
  • Bellucci F, Milia A, Rolandi G, et al. Structural control on the Upper Pleistocene ignimbrite eruptions in the Neapolitan area (Italy): Planar volcano tectonic faults versus caldera faults. In: De Vivo B, editor. Vesuvius and volcanism of the Campanian Plain. Amsterdam: Elsevier, Developments in Volcanology 9; 2006. p. 163–180.
  • Berrino G, Corrado G, Luongo G, et al. Ground deformation and gravity change accompanying the 1982 Pozzuoli uplift. Bull. Volcanol. 1984;47(2):187–200.
  • Dvorak JJ, Berrino G. Recent ground movement and seismic activity in Campi Flegrei, southern Italy: episodic growth of a resurgent dome. J Geophys Res. 1991;96:2309–2323.
  • De Natale G, Troise C, Pingue F, et al. Structure and dynamics of the Somma Vesuvius volcanic complex. Mineral Petrol. 2001;73:5–22.
  • Battaglia M, Troise C, Obrizzo F, et al. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys Res Lett. 2006;33:L01307.
  • Troise C, De Natale G, Pingue F, et al. Renewed ground uplift at Campi Flegrei caldera (Italy): new insight on magmatic processes and forecast. Geophys Res Lett. 2007;34:L03301.
  • Carlino S, Kilburn CRJ, Tramelli A, et al. Tectonic stress and renewed uplift at Campi Flegrei caldera, southern Italy: New insights from caldera drilling. Earth Planet Sci Lett. 2015;420:23–29.
  • Troise C, De Natale G, Schiavone R, et al. The Campi Flegrei caldera unrest: Discriminating magma intrusions from hydrothermal effects and implications for possible evolution. Earth Sci Rev. 2019;188:108–122.
  • De Pippo T, Di Cara A, Guida M, et al. Contributi allo studio del Golfo di Pozzuoli: lineamenti di geomorfologia. Memorie della Società Geologica Italiana. 1984;27:151–159.
  • Pescatore T, Diplomatico G, Senatore MR, et al. Contributi allo studio del Golfo di Pozzuoli: aspetti stratigrafici e strutturali. Memorie della Società Geologica Italiana. 1984;27:133–149.
  • Milia A. The stratigraphic signature of volcanism off Campi Flegrei (Bay of Naples. Italy). Spe Pap Geol Soc Am. 2010;464:155–170.
  • De Vivo B, Rolandi G, Gans PB, et al. New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineral Petrol. 2001;73(1–3):47–65.
  • Orsi G, Civetta L, Del Gaudio C, et al. Short-term ground deformations and seismicity in the nested Campi Flegrei Caldera (Italy): an example of active block resurgence in a densely populated area. J Volcanol Geotherm Res. 1999;91:415–451.
  • Acocella V. Evaluating fracture patterns within a resurgent caldera: Campi Flegrei, Italy. Bull Volcanol. 2010;72:623–638.
  • Cinque A, Rolandi G, Zamparelli V. L’estensione dei depositi marini olocenici nei Campi Flegrei in relazione alla vulcano–tettonica. Bollettino della Società Geologica Italiana. 1985;104:327–348.
  • Milia A. The geomorphology of Naples Bay continental shelf (Italy). Geografia Fisica e dinamica Quaternaria. 1999;22(1):73–78.
  • Milia A, Torrente MM. Fold uplift and synkinematic stratal architectures in a region of active transtensional tectonics and volcanisms, Eastern Tyrrhenian Sea. Geol Soc Am Bull. 2000;112(10):1531–1542.
  • Insinga D, Di Meglio A, Molisso F, et al. Stratigrafia e caratteristiche fisiche dei depositi olocenici del porto di Miseno, Golfo di Pozzuoli (Tirreno centroorientale). Il Quaternario. 2002;15:9–19.
  • Milia A, Giordano F. Holocene stratigraphy and depositional architecture of eastern Pozzuoli Bay (eastern Tyrrhenian Sea margin, Italy): the influence of tectonics and wave-induced currents. Geo-Mar Lett. 2002;22(1):42–50.
  • Budillon F, Conforti A, Tonielli R, et al. Morfobatimetria del Golfo di Pozzuoli. In: Lirer L, editor. I Campi Flegrei, storia di un campo vulcanico. Napoli: Quaderni dell'Accademia Pontaniana; 2011. p. 105–120. (in Italian).
  • Somma R, Iuliano S, Matano F, et al. High-resolution morpho-bathymetry of Pozzuoli Bay, southern Italy. J Maps. 2016;12(2):222–230.
  • Passaro S, Tamburrino S, Vallefuoco M, et al. High-resolution morpho-bathymetry of the Gulf of Naples, eastern Tyrrhenian Sea. J Maps. 2016;12:203–210.
  • Di Martino G, Innangi S, Passaro S, et al. (2020). Mapping of seabed morphology of the Bagnoli brownfield site, Pozzuoli (Napoli) Bay, Italy. This volume.
  • Amadio G. (1992). La cartografia in forma raster. Bollettino di geodesia e scienze affini, anno LI, n. 3. I.G.M. (Firenze).
  • SIT- Sistema Informativo Territoriale. Digital altimetry database, Regione Campania, 2004.
  • Simpkin PG, Davis A. For seismic profiling in very shallow water, a novel receiver. IKB-SEISTEC profiler (a line in-cone configuration) yields 0.25 meter resolution in water depths less than 2 metres. Sea Technol. 1993;34(9):21–28.
  • Mosher DC, Simpkin PG. Environmental marine geosciencel. Status and trends of marine high-resolution seismic reflection profiling: data acquisition. Geoscience Canada. 1999;26(4):174–188.
  • Calderoni G, Russo F. The geomorphological evolution of the outskirts of Naples during the Holocene: a case study of the Bagnoli-Fuorigrotta depression. The Holocene. 1998;8(5):581–588.
  • Isaia R, Vitale S, Marturano A, et al. High-resolution geological investigations to reconstruct thelong-term ground movements in the last 15 kyr at Campi Flegreicaldera (southern Italy). J Volcanol Geotherm Res. 2019;385:143–158.
  • Milia A, Torrente MM. Late-Quaternary volcanism and transtensional tectonics in the Bay of Naples, Campanian continental margin, Italy. Mineral Petrol. 2003;79(1–2):49–65.
  • Hernández-Molina FJ, Fernández-Salas LM, Lobo FJ, et al. The infralittoral prograding wedge: a new largescale progradational sedimentary body in shallow marine environments. Geomarine Letters. 2000;20:109–117.
  • Pepe F, Ferranti L, Sacchi M, et al. Pattern and rate of post-20 ka vertical tectonic motion around the Capo Vaticano Promontory (W Calabria, Italy) based on offshore geomorphological indicators. Quat Int. 2014. doi:10.1016/j.quaint.2013.11.012.
  • Passaro S, Genovese S, Sacchi M, et al. First hydroacoustic evidence of marine, active fluid vents in the Naples Bay continental shelf (Southern Italy). J Volcanol Geotherm Res. 2014;285:29–35.
  • Sacchi M, Caccavale M, Corradino M, et al. The use and beauty of ultra-high-resolution seismic reflection imaging in Late Quaternary marine volcaniclastic settings, Bay of Naples. Italy. Földtani Közlöny. 2019;149(4):371–394.
  • Sacchi M, Passaro S, Molisso F, et al. The Holocene marine record of unrest, volcanism, and hydrothermal activity of Campi Flegrei and Somma Vesuvius. In: B De Vivo, HE Belkin, G Rolandi, editor. Vesuvius, Campi Flegrei, and Campanian Volcanism. Amsterdam: Elsevier Inc; 2020. p. l435–l469.
  • Komuro H. Experiments on cauldron formation: a polygonal cauldron and ring fractures. J Volcanol Geotherm Res. 1987;31(1–2):139–149.
  • De Natale G, Troise C, Mark D, et al. The Campi Flegrei deep Drilling project (CFDDP): New insight on caldera structure, evolution and hazard implications for the Naples area (southern Italy). Geochem Geophys Geosyst. 2016;17:4836–4847. doi:10.1002/ 2015GC006183.
  • Di Vito MA, Acocella V, Aiello G, et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Scientific Reports. 2016;6:32245. doi:10.1038/srep32245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.