367
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Road salt chloride retention in wetland soils and effects on dissolved organic carbon export

&
Pages 342-359 | Received 02 Oct 2019, Accepted 24 Feb 2020, Published online: 24 Mar 2020

References

  • Kaushal SS, Likens GE, Pace ML, et al. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E574–E583. doi: 10.1073/pnas.1711234115
  • Kostick DS, Milanovich JA, Coleman RR. 2005 minerals yearbook-Salt: U.S. Geological Survey; March 2007; [cited 2019 June 23]. Available from: https://www.usgs.gov/centers/nmic/salt-statistics-and-information.
  • United States Geological Survey. Salt Statistics and Information: Mineral Commodity Summaries. National Mineral Information Center; 2015; [cited 2019 June 23]. Available from: https://www.usgs.gov/centers/nmic/salt-statistics-and-information.
  • Grady SJ, Mullaney JR. Natural and human factors affecting shallow water quality in surficial aquifers in the Connecticut, Housatonic, and Thames River Basins. US Geological Survey; Branch of Information Services [distributor]; 1998.
  • Kaushal SS, Groffman PM, Likens GE, et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. U. S. A. 2005;102:13517–13520. doi: 10.1073/pnas.0506414102
  • Kelly VR, Lovett GM, Weathers KC, et al. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamwater concentration. Environ. Sci. Technol. 2008;42:410–415. doi: 10.1021/es071391l
  • Novotny EV, Murphy D, Stefan HG. Increase of urban lake salinity by road deicing salt. Sci Total Environ. 2008;406:131–144. doi: 10.1016/j.scitotenv.2008.07.037
  • Dugan HA, Bartlett SL, Burke SM, et al. Salting our freshwater lakes. Proc. Natl. Acad. Sci. U. S. A. 2017;114:4453–4458. doi: 10.1073/pnas.1620211114
  • Herbert ER, Boon P, Burgin AJ, et al. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere. 2015;6, 1–43 art206. doi: 10.1890/ES14-00534.1
  • Hintz WD, Relyea RA. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshw Biol. 2019;64:1081–1097. doi: 10.1111/fwb.13286
  • Ramakrishna DM, Viraraghavan T. Environmental impact of Chemical Deicers – A Review. Water Air Soil Pollut. 2005;166:49–63. doi: 10.1007/s11270-005-8265-9
  • Cañedo-Argüelles M, Kefford BJ, Piscart C, et al. Salinisation of rivers: An urgent ecological issue. Environ Pollut. 2013;173:157–167. doi: 10.1016/j.envpol.2012.10.011
  • Sanzo D, Hecnar SJ. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ Pollut. 2006;140:247–256. doi: 10.1016/j.envpol.2005.07.013
  • Hopkins GR, French SS, Brodie ED. Increased frequency and severity of developmental deformities in rough-skinned newt (Taricha granulosa) embryos exposed to road deicing salts (NaCl & MgCl2). Environ Pollut. 2013;173:264–269. doi: 10.1016/j.envpol.2012.10.002
  • Silver P, Rupprecht SM, Stauffer MF. Temperature-dependent effects of road deicing salt on chironomid larvae. Wetlands. 2009;29:942–951. doi: 10.1672/08-212.1
  • Kjensmo J. The influence of road salts on the salinity and the meromictic stability of lake Svinsjoen, southeastern Norway. Hydrobiologia. 1997;347:151–159. doi: 10.1023/A:1003035705729
  • Judd KE, Adams HE, Bosch NS, et al. A Case history: effects of mixing regime on nutrient dynamics and community structure in Third Sister lake, Michigan during late winter and early spring 2003. Lake and Reservoir Manage. 2005;21:316–329. doi: 10.1080/07438140509354437
  • Nielsen DL, Brock MA, Crossle K, et al. The effects of salinity on aquatic plant germination and zooplankton hatching from two wetland sediments. Freshw. Biol. 2003;48:2214–2223. doi: 10.1046/j.1365-2427.2003.01146.x
  • Baldwin DS, Rees GN, Mitchell AM, et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands. 2006;26:455–464. doi: 10.1672/0277-5212(2006)26[455:TSEOSO]2.0.CO;2
  • Jackson RB, Jobbagy EG. From icy roads to salty streams. Proc. Natl. Acad. Sci. U. S. A. 2005;102:14487–14488. doi: 10.1073/pnas.0507389102
  • Stets EG, Lee CJ, Lytle DA, et al. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. Sci Total Environ. 2018;613–614:1498–1509. doi: 10.1016/j.scitotenv.2017.07.119
  • Christophersen N, Neal C. Linking hydrological, geochemical, and soil chemical processes on the catchment scale: An interplay between modeling and field work. Water Resour Res. 1990;26:3077–3086.
  • Lovett GM, Likens GE, Buso DC, et al. The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry. 2005;72:191–232. doi: 10.1007/s10533-004-0357-x
  • Svensson T, Lovett GM, Likens GE. Is chloride a conservative ion in forest ecosystems? Biogeochemistry. 2012;107:125–134. doi: 10.1007/s10533-010-9538-y
  • Cooper CA, Mayer PM, Faulkner BR. Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry. 2014;121:149–166. doi: 10.1007/s10533-014-9968-z
  • Silk PJ, Lonergan GC, Arsenault TL, et al. Evidence of natural organochlorine formation in peat bogs. Chemosphere. 1997;35:2865–2880. doi: 10.1016/S0045-6535(97)00347-0
  • Rhodes AL, Newton RM, Pufall A. Influences of land use on water quality of a diverse New England watershed. Environ. Sci. Technol. 2001;35:3640–3645. doi: 10.1021/es002052u
  • Fahimi IJ, Keppler F, Schöler HF. Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere. 2003;52:513–520. doi: 10.1016/S0045-6535(03)00212-1
  • Keppler F, Biester H. Peatlands: a major sink of naturally formed organic chlorine. Chemosphere. 2003;52:451–453. doi: 10.1016/S0045-6535(03)00210-8
  • Bastviken D, Sandén P, Svensson T, et al. Chloride retention and release in a boreal forest soil:  effects of soil water residence time and nitrogen and chloride loads. Environ. Sci. Technol. 2006;40:2977–2982. doi: 10.1021/es0523237
  • Gribble GW. The diversity of naturally produced organohalogens. Chemosphere. 2003;52:289–297. doi: 10.1016/S0045-6535(03)00207-8
  • Oberg G, Sanden P. Retention of chloride in soil and cycling of organic matter-bound chlorine. Hydrol. Process. 2005;19:2123–2136. doi: 10.1002/hyp.5680
  • Kim S, Koretsky C. Effects of road salt deicers on sediment biogeochemistry. Biogeochemistry. 2013;112:343–358. doi: 10.1007/s10533-012-9728-x
  • Warren LA, Zimmerman AP. The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river. Water Res. 1994;28:1921–1931. doi: 10.1016/0043-1354(94)90167-8
  • Bäckström M, Karlsson S, Bäckman L, et al. Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res. 2004;38:720–732. doi: 10.1016/j.watres.2003.11.006
  • Wilhelm JF, Bain DJ, Green MB, et al. Trace metals in northern New England streams: Evaluating the role of road salt across broad spatial scales with synoptic snapshots. PLOS ONE. 2019;14:e0212011. doi: 10.1371/journal.pone.0212011
  • Green SM, Machin R, Cresser MS. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environ Pollut. 2008;152:20–31. doi: 10.1016/j.envpol.2007.06.005
  • Duan S, Kaushal SS. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences. 2015;12:7331–7347. doi: 10.5194/bg-12-7331-2015
  • Green SM, Machin R, Cresser MS. Does road salting induce or ameliorate DOC mobilisation from roadside soils to surface waters in the long term? Environ Monit Assess. 2009;153:435–448. doi: 10.1007/s10661-008-0369-4
  • Norrström A-C, Bergstedt E. The impact of road De-Icing salts (NaCl) on colloid dispersion and base Cation Pools in Roadside soils. Water Air Soil Pollut. 2001;127:281–299. doi: 10.1023/A:1005221314856
  • Gosch L, Janssen M, Lennartz B. Impact of the water salinity on the hydraulic conductivity of fen peat. Hydrol. Process. 2018;32:1214–1222. doi: 10.1002/hyp.11478
  • Ardon M, Helton AM, Bernhardt ES. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry. 2016;127:411–426. doi: 10.1007/s10533-016-0189-5
  • Liu H, Lennartz B. Short term effects of Salinization on compound release from drained and Restored coastal wetlands. Water (Basel). 2019;11:1549.
  • Driscoll CT, Driscoll KM, Roy KM, et al. Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environ. Sci. Technol. 2003;37:2036–2042. doi: 10.1021/es020924h
  • Evans CD, Monteith DT, Cooper DM. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 2005;137:55–71. doi: 10.1016/j.envpol.2004.12.031
  • Monteith DT, Stoddard JL, Evans CD, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 2007;450:537–540. doi: 10.1038/nature06316
  • Clark JM, Bottrell SH, Evans CD, et al. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci. Total Environ. 2010;408:2768–2775. doi: 10.1016/j.scitotenv.2010.02.046
  • Solomon CT, Jones SE, Weidel BC, et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems. 2015;18:376–389. doi: 10.1007/s10021-015-9848-y
  • Millennium Ecosystem Assessment. Ecosystems and human well-being: wetlands and water synthesis: a report of the Millennium ecosystem Assessment. Washington (DC): World Resources Institute; 2005. doi: 10.1126/science.1131946
  • Kincaid DW, Findlay SEG. Sources of elevated chloride in local streams: Groundwater and soils as potential reservoirs. Water Air Soil Pollut. 2009;203:335–342. doi: 10.1007/s11270-009-0016-x
  • Nelson DW, Sommers LE. Chapter 34. Total carbon, organic carbon, and organic matter. In: Bigham JM, et al., editor. Methods of soil analysis. part 3. Chemical methods-SSSA Book Series no. 5. Madison (WI): Soil Science Society of America and American Society of Agronomy, Inc.,; 1996. p. 1001–1006.
  • Weishaar JL, Aiken GR, Bergamaschi BA, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003;37:4702–4708. doi: 10.1021/es030360x
  • Potter BB, Wimsatt JC. USEPA method 415.3: Quantifying TOC, DOC, and SUVA. J Am Water Works Assoc. 2012;104:E358–E369. doi: 10.5942/jawwa.2012.104.0086
  • Clarke N, Fuksová K, Gryndler M, et al. The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Environ Sci Pollut Res. 2009;16:127–143. doi: 10.1007/s11356-008-0090-4
  • Oeberg G, Bastviken D. Transformation of chloride to organic chlorine in terrestrial environments: variability, extent, and implications. Crit. Rev. Environ. Sci. Technol. 2012;42:2526–2545. doi: 10.1080/10643389.2011.592753
  • Johansson E, Sanden P, Oberg G. Spatial patterns of organic chlorine and chloride in Swedish forest soil. Chemosphere. 2003;52:391–397. doi: 10.1016/S0045-6535(03)00193-0
  • Redon P-O, Abdelouas A, Bastviken D, et al. Chloride and organic chlorine in forest soils: storage, residence times, and influence of ecological conditions. Environ. Sci. Technol. 2011;45:7202–7208. doi: 10.1021/es2011918
  • Gryndler M, Rohlenova J, Kopecky J, et al. Chloride concentration affects soil microbial community. Chemosphere. 2008;71:1401–1408. doi: 10.1016/j.chemosphere.2007.11.003
  • Crawford RL, Hess TF, Paszczynski A. Combined biological and Abiological segradation of xenobiotic compounds. In: Singh A, Ward OP, editor. Biodegradation and Bioremediation. Berlin: Springer; 2004. p. 251–278.
  • Rath KM, Fierer N, Murphy DV, et al. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019;13:836–846. doi: 10.1038/s41396-018-0313-8
  • Shen W, Ni Y, Gao N, et al. Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates. Appl. Soil Ecol. 2016;108:76–83. doi: 10.1016/j.apsoil.2016.08.005
  • Haq S, Kaushal SS, Duan S. Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. Biogeochemistry. 2018;141:463–486. doi: 10.1007/s10533-018-0514-2
  • Lancaster NA, Bushey JT, Tobias CR, et al. Impact of chloride on denitrification potential in roadside wetlands. Environ. Pollut. 2016;212:216–223. doi: 10.1016/j.envpol.2016.01.068
  • Ballantine K, Schneider R. Fifty-five years of soil development in restored freshwater depressional wetlands. Ecol. Appl. 2009;19:1467–1480. doi: 10.1890/07-0588.1
  • Ehrenfeld JG. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems. 2003;6:503–523. doi: 10.1007/s10021-002-0151-3
  • Hansson LA, Bronmark C, Nilsson PA, et al. Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw. Biol. 2005;50:705–714. doi: 10.1111/j.1365-2427.2005.01352.x
  • Chambers LG, Osborne TZ, Reddy KR. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry. 2013;115:363–383. doi: 10.1007/s10533-013-9841-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.