155
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Oxidative responses of macro-invertebrates in relation to environmental variables in rivers of East Kalimantan, Indonesia

& ORCID Icon
Pages 855-867 | Received 08 Nov 2019, Published online: 09 Jul 2020

References

  • Patang F, Soegianto A, Hariyanto S. Benthic macroinvertebrates diversity as bioindicator of water quality of some rivers in East Kalimantan, Indonesia. Int J Ecol. 2018:11. doi:10.1155/2018/5129421.
  • Ogbeibu AE, Oribhabor BJ. Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Res. 2002;36:2427–2436. doi: 10.1016/S0043-1354(01)00489-4
  • Wu H, Xuan R, Li Y, et al. Effects of cadmium exposure on digestive enzymes, antioxidant enzymes, and lipid peroxidation in the freshwater crab Sinopotamonhenanense. Environ Sci Pollut Res. 2013;20:4085–4092. doi: 10.1007/s11356-012-1362-6
  • Wang J, Zhu X, Huang X, et al. Combined effects of cadmium and salinity on juvenile Takifuguonscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium. Sci Rep. 2016;6:30968. doi: 10.1038/srep30968
  • Hossain MA, Aktar S, Qin JG. Salinity stress response in estuarine fishes from the Murray estuary and Coorong, South Australia. Fish Physiol Biochem. 2016;42:1571–1580. doi: 10.1007/s10695-016-0241-3
  • Lushchak VJ. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol. 2011;101:13–30. doi: 10.1016/j.aquatox.2010.10.006
  • Liu N, Wang L, Yan B, et al. Assessment of antioxidant defense system responses in the hepatopancreas of the freshwater crab Sinopotamonhenanense exposed to lead. Hydrobiologia. 2014;741:3–13. doi: 10.1007/s10750-014-1806-8
  • Jones DP. The role of oxygen concentration in oxidative stress: hypoxic and hyperoxic models. In: Sies H, editor. Oxidative stress. Orlando, FL: Academic Press; 1985. p. 151–195.
  • Rifkind JM, Abugo O, Levy A, et al. Formation of free radicals under hypoxia. Ch. 34. In: Hochachka PW, Lutz PL, Rosenthal M, et al. editors. Surviving Hypoxia: mechanisms of control and adaptation. Boca Raton, FL: CRC Press, Inc; 1993. p. 509–525.
  • Ross SW, Dalton DA, Kramer S, et al. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comp Biochem Physiol Part C. 2014;130:289–303.
  • Dalton DA. Antioxidant defenses of plants and fungi. Ch. 9. In: Ahmad S, editor. Oxidative stress and antioxidant defenses in biology. New York: Chapman and Hall; 1995. p. 298–355.
  • DiGiulio RT, Washburn PC, Wenning RJ, et al. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ Toxicol Chem. 1989;8:1103–1123. doi: 10.1002/etc.5620081203
  • Shofiatun S, Handayani KS, Suryani H, et al. Oxidative stress responses in gills of white shrimp (Litopenaeusvannamei Boone, 1931) following exposure to cadmium at different salinities. Cahiers de Biol Mar. 2017;58:461–466.
  • Rodrıguez-Ariza A, Alhama J, Dıaz-Mendez FM, et al. Content of 8-oxodG in chromosomal DNA of Sparusaurata fish as biomarker of oxidative stress and environmental pollution. Mutat Res. 1999;438:97–107. doi: 10.1016/S1383-5718(98)00156-9
  • Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009
  • Feng MB, Qu RJ, Wang C, et al. Comparative antioxidant status in freshwater fish Carassiusauratus exposed to six current-use brominated blame retardants: A combined experimental and theoretical study. Aquat Toxicol. 2013;140–141:314–323. doi: 10.1016/j.aquatox.2013.07.001
  • Epler JH. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources Division of Water Quality; 2001.
  • Gooderham J. The Waterbug book. Collingwood (Victoria): CSIRO Publishing; 2002.
  • Oscoz J, Galicia D, Miranda R, editors. Identification guide of freshwater macroinvertebrates of Spain. Springer, Netherlands; 2011. doi:10.1007/978-94-007-1554-7.
  • Pennak RW. Freshwater invertebrates of United States. New York: John Wiley and Sons; 1978.
  • Dharma B. Indonesian Shell. I and II ed. Jakarta: PT. Sarana Graha; 1988.
  • Edmonson WT. Fresh water biology. New York: John Wiley and Sons; 1963.
  • Needham JG, Needham PR. A guide to the study of fresh-water biology. San Francisco (CA): Holden Day, Inc.; 1962.
  • Rice EW, Baird RB, Eaton AD, et al. Standard methods for the examination of water and wastewater. 22nd ed. American Public Health Association Federation, American Water Works, Water Environment Federation, Washington DC; 2012.
  • Sriariyanuwath E, Sangpradub N, Hanjavanit C. Diversity of chironomid larvae in relation to water quality in the Phong River, Thailand. ACL Bioflux. 2015;8:933–945.
  • Arslan N, Salur A, Kalyoncu H, et al. The use of BMWP and ASPT indices for evaluation of water quality according to macroinvertebrates in Kucuk Menderes River (Turkey). Biologia. 2016;71:49–57. doi: 10.1515/biolog-2016-0005
  • Luoto TP. The relationship between water quality and chironomid distribution in Finland—A new assemblage-based tool for assessments of long-term nutrient dynamics. Ecol Indic. 2011;11:255–262. doi: 10.1016/j.ecolind.2010.05.002
  • Suzuki J, Imamura M, Nakano D, et al. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae. Sci Total Environ. 2018;630:1078–1085. doi: 10.1016/j.scitotenv.2018.02.286
  • Qu R, Wang X, Wang Z, et al. Metal accumulation and antioxidant defenses in the freshwater fish Carassiusauratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater. 2014;275:89–98. doi: 10.1016/j.jhazmat.2014.04.051
  • Romeo M, Bennani N, Gnassia-Barelli M, et al. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchuslabrax. Aquat Toxicol. 2000;48:185–194. doi: 10.1016/S0166-445X(99)00039-9
  • Wang J, Zhang P, Shen Q, et al. The effects of cadmium exposure on the oxidative state and cell death in the gill of freshwater crab Sinopotamonhenanense. PLos One. 2013;2013(8):5.e64020. doi:10.1371/journal.pone.0064020.
  • Mates JM, Fransisca SJ. Antioxidant enzymes and their implication in pathophysiology process. Front Biosci. 1999;1999(4):d339–d345. doi: 10.2741/A432
  • Handayani KS, Soegianto A. Oxidative stress responses in gills of tilapia (Oreochromisniloticus Linnaeus, 1758) after cadmium exposure. Ecol Environ Conserv. 2019;25(April Supplement Issue):S46–S49.
  • Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull. 2001;42:656–666. doi: 10.1016/S0025-326X(01)00060-1
  • Cruz D, Almeida A, Calisto V, et al. Caffeine impacts in the clam Ruditapes philippinarum: alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere. 2016;160:95–103. doi: 10.1016/j.chemosphere.2016.06.068
  • Vlahogianni T, Dassenakis M, Scoullos MJ, et al. Integrated use of bio-markers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar Pollut Bull. 2007;54:1361–1371. doi: 10.1016/j.marpolbul.2007.05.018
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biol Med. 1991;11:81–128. doi: 10.1016/0891-5849(91)90192-6
  • Valerio LG, Petersen DR. Formation of liver microsomal MDA-protein adducts in mice with chronic dietary iron overload. Toxicol Lett. 1998;98:31–39. doi: 10.1016/S0378-4274(98)00100-3
  • Girgin S, Kazancı N, Dügel M. Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques,”. Int J Environ Sci Tech. 2010;7:653–664. doi: 10.1007/BF03326175
  • Tollett VD, Benvenutti EL, Deer LA, et al. Differential toxicity to Cd, Pb, and Cu in Dragonfly larvae (Insecta: Odonata). Arch Environ Contam Toxicol. 2009;56:77–84. doi: 10.1007/s00244-008-9170-1
  • Simon E, Tóthmérész B, Kis O, et al. Environmental-friendly contamination assessment of habitats based on the trace element content of dragonfly Exuviae. Water. 2019;11:2200. doi: 10.3390/w11112200
  • Haque MN, Nam S-E, Eom H-J, et al. Exposure to sublethal concentrations of zinc pyrithione inhibits growth and survival of marine polychaete through induction of oxidative stress and DNA damage. Mar Pollut Bull. 2020;156(111276). doi:10.1016/j.marpolbul.2020.111276.
  • Barker RTM, Martin P, Davies SJ. Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquat Toxicol. 1997;40:51–61. doi: 10.1016/S0166-445X(97)00047-7
  • Mao H, Reddy GR, Marnett LJ, et al. Solution structure of an oligonucleotide containing the malondialdehyde deoxyguanosine adduct N2-(3-oxo-1-propenyl)-dG (ring-opened M1G) positioned in a (CpG)3frameshift hotspot of the Salmonella typhimurium hisD3052 Gene. Biochemistry. 1999;38:13491–13501. doi: 10.1021/bi9910124
  • Marnett LJ. Chemistry and biology of DNA damage by malondialdehyde. IARC Scientitic Pub. 1999;150:17–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.