273
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Biotransformation of chromium (VI) by Bacillus sp. isolated from chromate contaminated landfill site

ORCID Icon, , , , , & ORCID Icon show all
Pages 922-937 | Received 27 Mar 2020, Accepted 07 Jul 2020, Published online: 29 Jul 2020

References

  • Mohapatra RK, Parhi PK, Thatoi H, et al. Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha. India. Chem. Ecol. 2017;33:114–130. doi: 10.1080/02757540.2016.1275586
  • Gutiérrez-Corona JF, Romo-Rodríguez P, Santos-Escobar F, et al. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology. World J. Microbiol. Biotechnol. 2016;32:191. doi: 10.1007/s11274-016-2150-0
  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, et al. Mechanisms of bacterial resistance to chromium compounds. BioMetals. 2008;21:321–332. doi: 10.1007/s10534-007-9121-8
  • Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011;24:1617–1629. doi: 10.1021/tx200251t
  • Cervantes C, Campos-García J, Devars S, et al. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 2001;25:335–347. doi: 10.1111/j.1574-6976.2001.tb00581.x
  • Baaziz H, Gambari C, Boyeldieu A, et al. ChrASO, the chromate efflux pump of Shewanella oneidensis, improves chromate survival and reduction. Cascales E, editor. PLoS One. 2017;12:e0188516. doi: 10.1371/journal.pone.0188516
  • Akbarpour Nesheli M, Asgarani E, Dabbagh R. Biosorption potential of Cr(VI) by Kocuria sp. ASB107, a radio-resistant bacterium isolated from Ramsar, Iran. Chem. Ecol. 2018;34:163–176. doi: 10.1080/02757540.2017.1399126
  • USEPA. Toxicological review of hexavalent chromium (CAS No. 18540-29-9). 1998. US EPA, Washington DC. [cited 2019 Nov 21]. Available from: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0144tr.pdf.
  • Dhal B, Thatoi HN, Das NN, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013;250-251:272–291. doi: 10.1016/j.jhazmat.2013.01.048
  • Banik S, Das KC, Islam MS, et al. Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM. Biotechnol. Bioeng. 2013;2(1):1035.
  • Malaviya P, Singh A. Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Crit. Rev. Environ. Sci. Technol. 2011;41:1111–1172. doi: 10.1080/10643380903392817
  • Malaviya P, Singh A. Bioremediation of chromium solutions and chromium containing wastewaters. Crit. Rev. Microbiol. 2016;42:607–633. doi: 10.3109/1040841X.2014.974501
  • Viti C, Marchi E, Decorosi F, et al. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol. Rev. 2014;38(4):633–659. doi: 10.1111/1574-6976.12051
  • Joutey NT, Sayel H, Bahafid W, et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev. Environ. Contam. Toxicol. 2015;233:45–69.
  • Ontañon OM, Fernandez M, Agostini E, et al. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E. Environ. Sci. Pollut. Res. 2018;25:16111–16120. doi: 10.1007/s11356-018-1764-1
  • Pradhan SK, Singh NR, Rath BP, et al. Bacterial chromate reduction: a review of important genomic, proteomic, and bioinformatic analysis. Crit. Rev. Environ. Sci. Technol. 2016;46:1659–1703. doi: 10.1080/10643389.2016.1258912
  • Thatoi H, Das S, Mishra J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. J. Environ. Manage. 2014;146:383–399. doi: 10.1016/j.jenvman.2014.07.014
  • Viti C, Giovannetti L. Bioremediation of soils polluted with hexavalent chromium using bacteria: A challenge. In: Singh SN, Tripathi RD, editor. Environmental bioremediation technologies. Berlin: Springer; 2007. p. 57–76.
  • Ackerley DF, Gonzalez CF, Keyhan M, et al. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol. 2004;6:851–860. doi: 10.1111/j.1462-2920.2004.00639.x
  • Mondol MN, Asia A, Chamon AS, et al. Contamination of soil and plant by the hazaribagh tannery industries. J. Asiat. Soc. Bangladesh, Sci. 2017;43:207–222. doi: 10.3329/jasbs.v43i2.46518
  • Rathnayake IVN, Megharaj M, Krishnamurti GSR, et al. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere. 2013;90:1195–1200. doi: 10.1016/j.chemosphere.2012.09.036
  • Cappuccino JG, Sherman N. Microbiology: a laboratory manual. 9th ed. Illinois, U.S.A.: Pearson; 2011.
  • Bergey DH, Buchanan RE, Gibbons NE. Manual of determinative bacteriology. 8th edn. Baltimore: The Williams and Wilkins Co.; 1974.
  • Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editor. Nucleic acid tech. bact. syst. New York: John Wiley and Sons; 1991. p. 115–175.
  • Patra RC, Malik S, Beer M, et al. Molecular characterization of chromium (VI) reducing potential in gram positive bacteria isolated from contaminated sites. Soil Biol. Biochem. 2010;42:1857–1863. doi: 10.1016/j.soilbio.2010.07.005
  • Kumar S, Stecher G, Li M, et al. MEGA x: Molecular evolutionary genetics analysis across computing platforms. Battistuzzi FU, editor. Mol Biol Evol 2018;35:1547–1549. doi: 10.1093/molbev/msy096
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425.
  • Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U. S. A. 2004;101:11030–11035. doi: 10.1073/pnas.0404206101
  • Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel. New York, U.S.A: Academic Press; 1965. p. 97–166.
  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N. Y). 1985;39:783–791.
  • Karim ME, Dhar K, Hossain MT. Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent. J. Genet. Eng. Biotechnol. 2018;16:375–380. doi: 10.1016/j.jgeb.2018.02.005
  • USEPA. Method 7196A: Chromium, Hexavalent (Colorimetric) | Hazardous Waste Test Methods / SW-846 | US EPA. 1992.
  • Sandana Mala JG, Sujatha D, Rose C. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol. Res. 2015;170:235–241. doi: 10.1016/j.micres.2014.06.001
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Hashem MA, Islam A, Mohsin S, et al. Green environment suffers by discharging of high-chromium-containing wastewater from the tanneries at Hazaribagh, Bangladesh. Sustain. Water Resour. Manag. 2015;1:343–347.
  • Hughes MN, Poole RK. Metal speciation and microbial growth - The hard (and soft) facts. J. Gen. Microbiol. 1991;137:725–734. doi: 10.1099/00221287-137-4-725
  • Megharaj M, Avudainayagam S, Naidu R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 2003;47:51–54. doi: 10.1007/s00284-002-3889-0
  • Sigma–Aldrich. Preparation of culture media, Microbiology. 2008. Available from: http://www.sigmaaldrich.com/Area_of_Interest/Biochemicals/BioUltra/Biological_Buffers_htm.
  • Priest F. Bacillus subtilis and other Gram-positive bacteria: biochemistry, physiology, and molecular genetics. In: Sonenshein A, Hoch J, Losick R, editors. Syst. ecol. bacillus. Washington, D.C.: ASM Press. 1993; p. 3–16.
  • Ejaz S, Rizvi FZ, Anwar S, et al. Biotransformation potential of hexavalent chromium by Bacillus pumilus-S4, Pseudomonas doudoroffii-S5 and Exiguobacterium-S8 in association with hydrophytes. Int J Environ Sci Technol 2013;10:709–718. doi: 10.1007/s13762-013-0226-z
  • Rehman F, Faisal M. Toxic hexavalent chromium reduction by Bacillus pumilus, Cellulosimicrobium cellulans and Exiguobacterium. Chinese J. Oceanol. Limnol. 2015;33:585–589. doi: 10.1007/s00343-015-4155-1
  • Ilias M, Rafiqullah IM, Debnath BC, et al. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents. Indian J. Microbiol. 2011;51:76–81. doi: 10.1007/s12088-011-0095-4
  • Ge S, Ge S, Zhou M, et al. Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl. Microbiol. Biotechnol. 2013;97:2131–2137. doi: 10.1007/s00253-012-4361-0
  • Kabir MM, Fakhruddin ANM, Chowdhury MAZ, et al. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. World J. Microbiol. Biotechnol. 2018;34:126. doi: 10.1007/s11274-018-2510-z
  • Baldiris R, Acosta-Tapia N, Montes A, et al. Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. Molecules. 2018;23:406. doi: 10.3390/molecules23020406
  • Yilmaz EI. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbiol. 2003;154:409–415. doi: 10.1016/S0923-2508(03)00116-5
  • Kumar R, Acharya C, Joshi SR. Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(VI) bioadsorption. J. Microbiol. 2011;49:568–574. doi: 10.1007/s12275-011-0366-0
  • Camargo FAO, Okeke BC, Bento FM, et al. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2 +. Appl Microbiol Biotechnol 2003;62:569–573. doi: 10.1007/s00253-003-1291-x
  • Losi ME, Amrhein C, Frankenberger WT Jr. Environmental biochemistry of chromium. Rev Env. Contam Toxicol. 1994;136:91–121. doi: 10.1007/978-1-4612-2656-7_3
  • Bopp LH, Ehrlich HL. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 1988;150:426–431. doi: 10.1007/BF00422281
  • Sau GB, Chatterjee S, Mukherjee SK. Chromate reduction by cell-free extract of Bacillus firmus KUCr1. Polish J. Microbiol. 2010;59:185–190. doi: 10.33073/pjm-2010-029
  • Thacker U, Madamwar D. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 2005;21:891–899. doi: 10.1007/s11274-004-6557-7
  • Soni SK, Singh R, Awasthi A, et al. In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ. Sci. Pollut. Res. 2013;20:1661–1674. doi: 10.1007/s11356-012-1178-4
  • Zhu Y, Yan J, Xia L, et al. Mechanisms of Cr(VI) reduction by Bacillus sp. CRB-1, a novel Cr(VI)-reducing bacterium isolated from tannery activated sludge. Ecotoxicol Environ Saf 2019;186:109792. doi: 10.1016/j.ecoenv.2019.109792
  • Mohamed MSM, El-Arabi NI, El-Hussein A, et al. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation. Folia Microbiol. (Praha). 2020. doi: 10.1007/s12223-020-00771-y
  • Aguilar-Barajas E, Paluscio E, Cervantes C, et al. Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol. Lett. 2008;285:97–100. doi: 10.1111/j.1574-6968.2008.01220.x
  • Mishra S, Bharagava RN. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Heal. - Part C Environ. Carcinog. Ecotoxicol. Rev. 2016;34:1–32.
  • Bagchi D, Stohs SJ, Downs BW, et al. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology. 2002;180:5–22. doi: 10.1016/S0300-483X(02)00378-5
  • Sharma A, Kapoor D, Wang J, et al. Chromium bioaccumulation and its impacts on plants: An overview. Plants (Basel). 2020;9:100. doi: 10.3390/plants9010100
  • Viti C, Viti C, Giovannetti L. The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms. Ann Microbiol. 2001: 201–213.
  • Shi W, Bischoff M, Turco R, et al. Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl. Soil Ecol. 2002;21:169–177. doi: 10.1016/S0929-1393(02)00062-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.