165
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Integrated response of the toxicity of environmentally relevant concentrations of copper in the backwater clam Meretrix casta

, , &
Pages 982-995 | Received 16 Jun 2020, Accepted 31 Aug 2020, Published online: 14 Sep 2020

References

  • Oehlmann J, Schulte-Oehlmann U. Chapter 17 Molluscs as bioindicators. In: Markert BA, Breure AM, Zechmeister HG, editors. Bioindicators & Biomonitors. Elsevier; 2003. p. 577–635.
  • Meyer III WM, Ostertag R, Cowie RH. Influence of Terrestrial Molluscs on Litter Decomposition and Nutrient release in a Hawaiian Rain Forest. Biotropica. 2013;45(6):719–727.
  • Byerley JJ, Scharer JM. Natural release of copper and zinc into the aquatic environment. Hydrometallurgy. 1992;30(1):107–126.
  • Bradl HB. Sources and origins of heavy metals. In: Bradl HB., editor. Heavy Metals in the Environment: Origin, Interaction and Remediation. London: Elsevier/Academic Press; 2005. p. 1–27.
  • de Oliveira-Filho EC, Lopes RM, Paumgartten FJR. Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere. 2004;56(4):369–374.
  • Brooks SJ, Waldock M. Copper Biocides in the Marine Environment BT - Ecotoxicology of Antifouling Biocides. In: Arai T, Harino H, Ohji M, Langston WJ, Tokyo: Springer Japan; 2009. p. 413–428.
  • Keller AA, Adeleye AS, Conway JR, et al. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017;7:28–40.
  • Anandkumar A, Nagarajan R, Prabakaran K, et al. Bioaccumulation of trace metals in the coastal Borneo (Malaysia) and health risk assessment. Mar Pollut Bull. 2019;145:56–66.
  • Arumugam A, Li J, Krishnamurthy P, et al. Investigation of toxic elements in Carassius gibelio and Sinanodonta woodiana and its health risk to humans. Environ Sci Pollut Res. 2020;27(16):19955–19969.
  • Gabbianelli R, Lupidi G, Villarini M, et al. DNA damage induced by copper on erythrocytes of gilthead sea bream Sparus aurata and mollusk Scapharca inaequivalvis. Arch Environ Contam Toxicol. 2003;45(3):350–356.
  • Chen D, Zhang D, Yu JC, et al. Effects of Cu2O nanoparticle and CuCl2 on zebrafish larvae and a liver cell-line. Aquat Toxicol. 2011;105(3–4):344–354.
  • Song L, Vijver MG, Peijnenburg WJGM, et al. A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere. 2015;139:181–189.
  • Glover CN, Urbina MA, Harley RA, et al. Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus. Aquat Toxicol. 2016;174:199–207.
  • Lee JA, Marsden ID, Glover CN. The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquat Toxicol. 2010;99(1):65–72.
  • Lahman SE, Trent KR, Moore PA. Sublethal copper toxicity impairs chemical orientation in the crayfish, Orconectes rusticus. Ecotoxicol Environ Saf. 2015;113:369–377.
  • Al-Subiai SN, Moody AJ, Mustafa SA, et al. A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicol Environ Saf. 2011;74(7):1913–1920.
  • Holan JR, King CK, Sfiligoj BJ, et al. Toxicity of copper to three common subantarctic marine gastropods. Ecotoxicol Environ Saf. 2017;136:70–77.
  • Jing G, Li Y, Xie L, et al. Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comp Biochem Physiol C Toxicol Pharmacol. 2006;144(2):184–190.
  • Sabatini SE, Rocchetta I, Nahabedian DE, et al. Oxidative stress and histological alterations produced by dietary copper in the fresh water bivalve Diplodon chilensis. Comp Biochem Physiol C Toxicol Pharmacol. 2011;154(4):391–398.
  • Nicholson S. Lysosomal membrane stability, phagocytosis and tolerance to emersion in the mussel Perna viridis (Bivalvia: Mytilidae) following exposure to acute, sublethal, copper. Chemosphere. 2003;52(7):1147–1151.
  • Parry HE, Pipe RK. Interactive effects of temperature and copper on immunocompetence and disease susceptibility in mussels (Mytilus edulis). Aquat Toxicol. 2004;69(4):311–325.
  • Bonnard M, Roméo M, Amiard-Triquet C. Effects of Copper on the Burrowing Behavior of Estuarine and Coastal Invertebrates, the Polychaete Nereis diversicolor and the Bivalve Scrobicularia plana. Hum Ecol Risk Assess An Int J. 2009;15(1):11–26.
  • Jiang W-D, Liu Y, Jiang J, et al. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: amelioration by myo-inositol. Aquat Toxicol. 2015;159:245–255.
  • Zeeshan M, Murugadas A, Ghaskadbi S, et al. ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp Biochem Physiol C Toxicol Pharmacol. 2016;185–186:1–12.
  • Guo H, Li K, Wang W, et al. Effects of Copper on Hemocyte Apoptosis, ROS production, and Gene Expression in White Shrimp Litopenaeus vannamei. Biol Trace Elem Res. 2017;179(2):318–326.
  • Moustafa MH, Sharma RK, Thornton J, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19(1):129–138.
  • Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084.
  • Sarma K, Kumar A, George G, et al. Impact of coastal pollution on biological, biochemical and nutritional status of edible oyster in Phoenix Bay Jetty and North Wandoor of Andaman. Indian J Animal Sci. 2013;83:321–325.
  • D’Costa A, Shyama SK, Praveen Kumar MK. Bioaccumulation of trace metals and total petroleum and genotoxicity responses in an edible fish population as indicators of marine pollution. Ecotoxicol Environ Saf. 2017;142; doi:10.1016/j.ecoenv.2017.03.049.
  • AWWA, APHA, WPCF. Standard methods for the examination of water and wastewater. 23rd edition Washington (DC): American Publication of Health Association; 2017.
  • Sarker S, Sarkar A. Role of Marine Pollutants in Impairment of DNA Integrity. J Toxicol Clin Toxicol. 2015;5:244–249.
  • Chen CM, Yu SC, Liu MC. Use of Japanese medaka (Oryzias latipes) and Tilapia (Oreochromis mossambicus) in toxicity tests on different industrial effluents in Taiwan. Arch Environ Contam Toxicol. 2001;40(3):363–370.
  • Juhel G, O’Halloran J, Culloty SC, et al. In vivo exposure to microcystins induces DNA damage in the haemocytes of the zebra mussel, Dreissena polymorpha, as measured with the comet assay. Environ Mol Mutagen. 2007;48(1):22–29.
  • Parolini M, Quinn B, Binelli A, et al. Cytotoxicity assessment of four pharmaceutical compounds on the zebra mussel (Dreissena polymorpha) haemocytes, gill and digestive gland primary cell cultures. Chemosphere. 2011;84(1):91–100.
  • Baršiene J, Andreikenaite L, Garnaga G, et al. Genotoxic and cytotoxic effects in the bivalve mollusks Macoma balthica and Mytilus edulis from the Baltic Sea. Ekologija. 2008;54:44–50.
  • Lee RF, Steinert S. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res. 2003;544(1):43–64.
  • Końca K, Lankoff A, Banasik A, et al. A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res. 2003;534(1–2):15–20.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Ellman GL, Courtney KD, Andres VJ, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
  • Galloway TS, Millward N, Browne MA, et al. Rapid assessment of organophosphorous/carbamate exposure in the bivalve mollusc Mytilus edulis using combined esterase activities as biomarkers. Aquat Toxicol. 2002;61(3):169–180.
  • Filgueira R, Comeau LA, Landry T, et al. Bivalve condition index as an indicator of aquaculture intensity: A meta-analysis. Ecol Indic. 2013;25:215–229.
  • Devin S, Burgeot T, Giambérini L, et al. The integrated biomarker response revisited: optimization to avoid misuse. Environ Sci Pollut Res Int. 2014;21(4):2448–2454.
  • Beliaeff B, Burgeot T. Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem. 2002;21(6):1316–1322.
  • Vernon EL, Jha AN. Assessing relative sensitivity of marine and freshwater bivalves following exposure to copper: application of classical and novel genotoxicological biomarkers. Mutat Res Toxicol Environ Mutagen. 2019;842:60–71.
  • Vosloo D, Sara J, Vosloo A. Acute responses of brown mussel (Perna perna) exposed to sub-lethal copper levels: integration of physiological and cellular responses. Aquat Toxicol. 2012;106–107:1–8.
  • Zhang Y, Song J, Yuan H, et al. Biomarker responses in the bivalve (Chlamys farreri) to exposure of the environmentally relevant concentrations of lead, mercury, copper. Environ Toxicol Pharmacol. 2010;30(1):19–25.
  • Xu K, Tang Z, Liu S, Liao Z, Xia H, Liu L, et al. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish Shellfish Immunol. 2018;82:77–83.
  • Pytharopoulou S, Grintzalis K, Sazakli E, et al. Translational responses and oxidative stress of mussels experimentally exposed to Hg, Cu and Cd: One pattern does not fit at all. Aquat Toxicol. 2011;105(1):157–165.
  • Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999;424(1–2):83–95.
  • Moncaleano-Niño AM, Luna-Acosta A, Gómez-Cubillos MC, et al. Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper. Ecotoxicol Environ Saf. 2018;151:242–254.
  • Bonnail E, Buruaem LM, Araujo GS, et al. Multiple Biomarker Responses in Corbicula fluminea exposed to Copper in Laboratory Toxicity Tests. Arch Environ Contam Toxicol. 2016;71(2):278–285.
  • Pampanin DM, Volpato E, Marangon I, et al. Physiological measurements from native and transplanted mussel (Mytilus galloprovincialis) in the canals of Venice. Survival in air and condition index. Comp Biochem Physiol A Mol Integr Physiol. 2005;140(1):41–52.
  • Osuna-Martínez CC, Páez-Osuna F, Alonso-Rodríguez R. Cadmium, copper, lead and zinc in cultured oysters under two contrasting climatic conditions in coastal lagoons from SE Gulf of California, Mexico. Bull Environ Contam Toxicol. 2011;87(3):272–275.
  • Hartmann A, Elhajouji A, Kiskinis E, et al. Use of the alkaline comet assay for industrial genotoxicity screening: comparative investigation with the micronucleus test. Food Chem Toxicol an Int J Publ Br Ind Biol Res Assoc. 2001;39(8):843–858.
  • D’costa AH, Shyama SKMKPK, Furtado S. The Backwater Clam (Meretrix casta) as a bioindicator species for monitoring the pollution of an estuarine environment by genotoxic agents. Mutat Res - Genet Toxicol Environ Mutagen. 2018;825; doi:10.1016/j.mrgentox.2017.11.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.