438
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of oxidative DNA damage, apoptosis and histopathological alterations on zebrafish exposed with green silver nanoparticle

, ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 655-670 | Received 09 Jan 2022, Accepted 29 Jul 2022, Published online: 08 Aug 2022

References

  • Mehwish HM, Rajoka MSR, Xiong Y, et al. Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J Environ Chem Eng. 2021;9(4):105290.
  • Zhao B, Deng S, Li J, et al. Green synthesis, characterization and antibacterial study on the catechin-functionalized ZnO nanoclusters. Mat Res Express. 2021;8(2):025006.
  • Aravind M, Ahmad A, Ahmad I, et al. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J Environ Chem Eng. 2021;9(1):104877.
  • Gul A, Shaheen A, Ahmad I, et al. Green synthesis, characterization, enzyme inhibition, antimicrobial potential, and cytotoxic activity of plant mediated silver nanoparticle using Ricinus communis leaf and root extracts. Biomolecules. 2021;11(2):206.
  • Damirchi TZ, Rostami Charati F, Akbari R, et al. Green synthesis of silver nanoparticles using the aqueous extract of Viscum album fruit. Nanochemistry Res. 2020;5(1):104–110.
  • Iliger KS, Sofi TA, Bhat NA, et al. Copper nanoparticles: green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J Biol Sci. 2021;28(2):1477–1486.
  • Umar MF, Ahmad F, Saeed H, et al. Bio-mediated synthesis of reduced graphene oxide nanoparticles from chenopodium album: their antimicrobial and anticancer activities. Nanomaterials. 2020;10(6):1096.
  • Öztürk YE, Gülümser E, Mut H, et al. Ökse Otu (Viscum album L.)’nun Yem Kalitesinin Belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi. 2020;7(2):201–206.
  • Dwivedi AD, Gopal K. Plant-mediated biosynthesis of silver and gold nanoparticles. J Biomed Nanotechnol. 2011;7(1):163–164.
  • Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, et al. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soci. 2014;18(4):356–363.
  • Srivastava N, Choudhary M, Singhal G, et al. SEM studies of saponin silver nanoparticles isolated from leaves of Chenopodium album L. for in vitro anti-acne activity. P Natl A Sci India B. 2020;90(2):333–341.
  • Esmaeilbeigi M, Behzadi Tayemeh M, Johari SA, et al. In silico modeling of the antagonistic effect of mercuric chloride and silver nanoparticles on the mortality rate of zebrafish (Danio rerio) based on response surface methodology. Environ Sci Pollut Res Int. 2022:1–12. doi:10.1007/s11356-022-19693-y.
  • Haque E, Ward AC. Zebrafish as a model to evaluate nanoparticle toxicity. Nanomaterials. 2018;8(7):561.
  • Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol. 2020;40(1):37–63.
  • Kokturk M, Yıldırım S, Nas MS, et al. Investigation of the oxidative stress response of a green synthesis nanoparticle (RP-Ag/ACNPs) in zebrafish. Biol Trace Element Res. 2022;200:2897–2907.
  • Batista JV, Matos APS, Oliveria AP, et al. Thermoresponsive hydrogel containing Viscum album extract for topic and transdermal use: development, stability and cytotoxicity activity. Pharmaceutics. 2022;14(1):37.
  • Çalımlı MH. Magnetic nanocomposite cobalt-multiwalled carbon nanotube and adsorption kinetics of methylene blue using an ultrasonic batch. Int J Environ Sci Technol. 2021;18(3):723–740.
  • Slimani R, El Ouahabi I, Abidi F, et al. Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: thermodynamics, kinetics, isotherms and error analysis. J Taiwan Inst Chem Eng. 2014;45(4):1578–1587.
  • Ensibi C, Hernández-Moreno D, Míguez Santiyán MP, et al. Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp. Environ Toxicol. 2014;29(4):386–393.
  • Zhang G, Zhang R, Wang F. Fast formation kinetics of methane hydrates loaded by silver nanoparticle coated activated carbon (Ag-NP@AC). Chem Eng J. 2021;417:129206.
  • Belin T, Epron F. Characterization methods of carbon nanotubes: a review. Mater Sci Eng B. 2005;119(2):105–118. doi:10.1016/j.mseb.2005.02.046.
  • Haq S, Yasin KA, Rehman W, et al. Green synthesis of silver oxide nanostructures and investigation of their synergistic effect with moxifloxacin against selected microorganisms. J Inorg Organomet Polym Mat. 2021;31(3):1134–1142.
  • Shah A, Haq S, Rehman W, et al. Photocatalytic and antibacterial activities of Paeonia emodi mediated silver oxide nanoparticles. Mater Res Express. 2019;6(4):045045.
  • Kaabipour S, Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J Nanotechnol. 2021;12(1):102–136.
  • Bilberg K, Hovgaard MB, Besenbacher F, et al. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol. 2012;2012:293784.
  • Kang JS, Park JW. Silver ion release accelerated in the gastrovascular cavity of Hydra vulgaris increases the toxicity of silver sulfide nanoparticles (Ag2S-NPs). Environ Toxicol Chem. 2021;40:1662–1672. doi:10.1002/etc.5017
  • Ale A, Galdopórpora JM, Mora MC, et al. Mitigation of silver nanoparticle toxicity by humic acids in gills of Piaractus mesopotamicus fish. Environ Sci Pollut Res Int. 2021;28:1–11.
  • Li L, Xu Z, Wimmer A, et al. New insights into the stability of silver sulfide nanoparticles in surface water: dissolution through hypochlorite oxidation. Environ Sci Technol. 2017;51:7920–7927.
  • Mosselhy DA, He W, Li D, et al. Silver nanoparticles: in vivo toxicity in zebrafish embryos and a comparison to silver nitrate. J Nanoparticle Res. 2016;18(8):1–15.
  • Qiang L, Arabeyyat ZH, Xin Q, et al. Silver nanoparticles in zebrafish (Danio rerio) embryos: uptake, growth and molecular responses. Int J Molecular Sci. 2020;21(5):1876.
  • Qu R, Xie Q, Tian J, et al. Metabolomics reveals the inhibition on phosphorus assimilation in Chlorella vulgaris F1068 exposed to AgNPs. Sci Total Environ. 2021;770:145362.
  • Coskun G, Ozgür H. Apoptoz ve nekrozun moleküler mekanizması. Arşiv Kaynak Tarama Dergisi. 2011;20(3):145–158.
  • Kumar CS, Raja MD, Sundar DS, et al. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohyd Polym. 2015;128:63–74.
  • Quevedo AC, Lynch I, Valsami-Jones E. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. Nanoscale. 2021;13(12):6142–6161.
  • Saud Alarifi DA, Alkahtani S, Verma A, et al. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomed. 2013;8:983–993.
  • Alak G, Ucar A, Parlak V, et al. Antioxidant potential of Ulexite in Zebrafish brain: assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system. Biol Trace Element Res. 2021;199(3):1092–1099.
  • Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Experimen Neuro. 1997;56(1):86–93.
  • Wennersten A, Holmin S, Mathiesen T. Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol. 2003;105(3):281–288.
  • Young C, Klocke BJ, Tenkova T, et al. Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. Cell Death Differ. 2003;10(10):1148–1155.
  • Ahamed M, Akhtar MJ, Khan MM, et al. Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere. 2019;216:823–831.
  • Kuzu M, Kandemir FM, Yıldırım S, et al. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ Sci Pollut R. 2021;28(9):10818–10831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.