265
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Chlorella-Daphnia consortium as a promising tool for bioremediation of Nile tilapia farming wastewater

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 873-895 | Received 11 Apr 2022, Accepted 30 Aug 2022, Published online: 12 Sep 2022

References

  • Khanjani MH, Sajjadi MM, Alizadeh M, et al. Nursery performance of pacific white shrimp (litopenaeus vannamei boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquac Res 2016;48:1491–1501.
  • El-Sayed AM. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Reviews in Aquaculture. 2020;13:676–705.
  • Avnimelech Y. Biofloc technology - A practical guide book. 2nd. Baton Rouge, Louisiana, USA: The World Aquaculture Society; 2012.
  • Hargreaves JA. Bioflocs production system for aquaculture. Stoneville, MS: Southern Regional Aquaculture Center (SRAC) Publication No. 4503; 2013.
  • Emerenciano M, Gaxiola G, Cuzo G.. Biofloc technology (BFT): A review for aquaculture application and animal food industry, Biomass Now - Cultivation and Utilization. London, UK: IntechOpen; 2013. p. 301–328.
  • Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, et al. Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Quality. 2017;5:92–109.
  • Azim ME, Little DC. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (oreochromis niloticus). Aquaculture. 2008;283(1-4):29–35.
  • De Alvarenga ÉR, Alves G, Fernandes AFA, et al. Moderate salinities enhance growth performance of Nile tilapia (oreochromis niloticus) fingerlings in the biofloc system. Aquac Res 2018;49:2919–2926.
  • Lima PCM, Abreu JL, Silva AEM, et al. Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Span J Agric Res. 2019;16:e0612.
  • Souza R, Lima E, Melo F, et al. The culture of Nile tilapia at different salinities using a biofloc system. Rev Ciênc Agron. 2019;50:267–275.
  • Martins MA, Poli MA, Legarda EC, et al. Heterotrophic and mature biofloc systems in the integrated culture of pacific white shrimp and Nile tilapia. Aquaculture. 2020;514:734517.
  • Ahmad I, Babitha Rani AM, Verma AK, et al. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquac Int. 2017;25:1215–1226.
  • Lobato OSC, de Azevedo Silva Ribeiro F, Miranda-Baeza A, et al. Production performance of litopenaeus vannamei (boone, 1931) fed with different dietary levels of tilapia processing waste silage reared in biofloc system using two carbon sources. Aquaculture. 2019;501:515–518.
  • Fimbres-Acedo YE, Servín-Villegas R, Garza-Torres R. Hydroponic horticulture using residual waters from oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with chlorella microalgae. Aquac Res 2020;51:4340–4360.
  • Abreu JL, Brito LO, Moraes LBS, et al. Utilização do resíduo sólido de cultivo de camarão em sistema de biofloco para produção da microalga navicula sp. Boletim do Instituto de Pesca. 2016;42:781–791.
  • Oliveira CYB, Lima J, Oliveira CDL, et al. Growth of chlorella vulgaris using wastewater from Nile tilapia (oreochromis niloticus) farming in a low-salinity biofloc system. Acta Sci Tech. 2020;2020(42):e46232–e46232.
  • Campos CVFS, da Silva Farias R, da Silva SMBC, et al. Production of daphnia similis claus, 1876 using wastewater from tilapia cultivation in a biofloc system. Aquac Int. 2020;28:403–419.
  • Ahmed N, Thompson S. The blue dimensions of aquaculture: A global synthesis. Sci Total Environ. 2019;652:851–861.
  • Campbell LM, Fairbanks L, Murray G. From blue economy to blue communities: reorienting aquaculture expansion for community wellbeing. Mar Policy. 2021;124:104361.
  • Jasmin MY, Syukri F, Kamarudin MS, et al. Potential of bioremediation in treating aquaculture sludge: review article. Aquaculture. 2020;519:734905.
  • Divya M, Aanand S, Srinivasan A, et al. Bioremadiation-an eco-friendly tool for effluent treatment: a review. Int. J. Appl. Res. 2015;1:530–537.
  • Wicker R, Bhatnagar A. Application of nordic microalgal-bacterial consortia for nutrient removal from wastewater. Chem Eng J. 2020;398:125567.
  • John EM, Krishnapriya K, Sankar TV. Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture. 2020;526:735390.
  • Milhazes-Cunha H, Otero A. Valorisation of aquaculture effluents with microalgae: The integrated multi-trophic aquaculture concept. Algal Res. 2016;24:416–424.
  • Gunning D, Maguire J, Burnell G. The development of sustainable saltwater-based food production systems: A review of established and novel concepts. Water (Basel). 2016;8:598.
  • Granada L, Sousa N, Lopes S, et al. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? - a review. Reviews in Aquaculture. 2016;8:283–300.
  • Boyd CE. Water quality: an introduction, 2nd ed. New York: Springer; 2015.
  • Roleda MY, Hurd CL. Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia. 2019;58:552–562.
  • Setubal RB, Nascimento RA, Bozelli RL. Zooplankton secondary production: main methods, overview and perspectives from Brazilian studies. Int Aquat Res. 2020;12:85–99.
  • Wang R, Li F, Ruan W, et al. Removal and degradation pathway analysis of 17β-estradiol from raw domestic wastewater using immobilised functional microalgae under repeated loading. Biochem Eng J 2020;161:107700.
  • Pau C, Serra T, Colomer J, et al. Filtering capacity of daphnia magna on sludge particles in treated wastewater. Water Res 2013;47:181–186.
  • Tomaselli L. The microalgal cell. In: Richmond A, editor. Handbook of microalgal culture: biotechnol appl phycol. Oxford: Blackwell Science Ltd; 2004. p. 146–167.
  • García-Galan MJ, Monllor-Alcaraz LS, Postigo C, et al. Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas. Environ Pollut. 2020;265:114579.
  • Sforza E, Kumkum P, Barbera E, et al. Bioremediation of industrial effluents: How a biochar pretreatment may increase the microalgal growth in tannery wastewater. J Water Process Eng. 2020;37:101431.
  • Andreotti V, Solinemo A, Rossi S, et al. Bioremediation of aquaculture wastewater with the microalgae tetraselmis suecica: semi-continuous experiments, simulation and photo-respirometric tests. Sci Total Environ. 2020;738:139859.
  • Pous N, Hidalgo M, Serra T, et al. Assessment of zooplankton-based eco-sustainable wastewater treatment at laboratory scale. Chemosphere. 2020;238:124683.
  • Theegala CS, Suleiman AA, Carriere PA. Toxicity and biouptake of lead and arsenic by daphnia pulex. J Environ Health. 2007;42:27–31.
  • Fikirdeşici-Ergen Ş, Üçüncü-Tunca E, Kaya M, et al. Bioremediation of heavy metal contaminated medium using lemna minor, daphnia magna and their consortium. Chemistry and Ecology. 2017;34:43–55.
  • Ahmad MT, Shariff M, Md Yusoff F, et al. Applications of microalga chlorella vulgaris in aquaculture. Reviews in Aquaculture. 2020;12:328–346.
  • Li S, Show PL, Ngo HH, et al. Algae-mediated antibiotic wastewater treatment: A critical review. ESE. 2022;9:100145.
  • Gil-Izquierdo A, Pedreño MA, Montoro-García S, et al. A sustainable approach by using microalgae to minimize the eutrophication process of Mar menor lagoon. Sci Total Environ. 2021;758:143613.
  • Provasoli L. Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A, editor. Cultures and collections of algae. proceedings of the U.S. – Japan conference. Hakone: Japanese Society of Plant Physiology; 1968. p. 63–75.
  • Buratini SV, Aragão MA. Alimento complementar adicionado às culturas de daphnia similis e ceriodaphnia dubia: efeitos da levedura e da digestão da ração. Journal of the Brazilian Society of Ecotoxicology. 2012;7:21–26.
  • Manso PRJ.. Produção em cativeiro de larvas de camarão marinho Litopenaeus vannamei: influência do campo magnético sobre a metamorfose e sobrevivência larval. . Florianópolis, Santa Catarina, Brazil: UFSC, Dissertação de Mestrado, Programa de pós-Graduação em Engenharia de Produção; 2006. p. .1–121.
  • Hoff FH, Snell TW. Plankton culture manual, 6th edn. Florida: Horida Aqua Farms Inc; 2006.
  • Otero AP, Muñoz MP, Medina-robles V, et al. Efecto del alimento sobre variables productivas de dos especies de cladóceros bajo condiciones de laboratorio. Revista MVZ Córdoba. 2013;18:3642–3647.
  • Koroleff F. Determination of nutrients. In: Grasshoff K, editor. Methods of seawater analysis. Weinheim: Verlag Chemie; 1976. p. 117–187.
  • Golterman HL, Clymo RS, Ohnstad MAM. Methods for physical and chemical analysis of fresh waters. 2ª ed. Oxford: Blackwell Scientific; 1978. 214.
  • Mackereth FJH, Heron J, Talling JF. Water analysis: some revised methods for limnologists. London: Blackwell Scientific Publications; 1978.
  • APHA American Public Health Association. Standard methods for the examination of water and wastewater. Washington: American Public Health Association; 2005.
  • Felföldy L, Szabo E, Tothl L. A biologia ivizminösités. Budapest: Vizügyi Hodrobiologia Vizdok; 1987.
  • R Core Team [internet]. R: A language and environment for statistical computing. Vienna(Austria): R Foundation for Statistical Computing; [accessed 2022 Jan 15]. Available from: https://www.R-project.org/.
  • Torrentera L, Tacon A. La producción de alimento vivo y su importância em acuacultura: Uma diagnosis. Italia: FAO; 1989.
  • Barrera TC, Andrade RL, Castro G, et al. Alimento vivo em la acuicultura. Contacto S. 2003;48:27–33.
  • Mota GCP, Campos CVFS, Moraes LBS, et al. Effect of the c:n ratio on daphnia magna (straus, 1820) production using tilapia farming wastewater. Bol Inst Pesca. 2019;45:e463.
  • Barsanti L, Gualtieri P.. Algae: anatomy, biochemistry, and biotechnology. Boca Raton, Florida, USA: CRC Press; 2006. p. 301.
  • Monakov AV. Review of studies on feeding of aquatic invertebrates conducted at the institute of biology of inland waters, academy of science, USSR. J Fish Res Board Can. 1972;29:363–383.
  • Aladin NV, Potts WTW. Osmoregulatory capacity of the cladocera. Journal of Comparative Physiology B. 1995;164:671–683.
  • Ebert D.. Ecology, epidemiology and evolution of parasitism in daphnia. Bethesda, Maryland, USA: National Library of Medicine (US), National Center for Biotechnology Information; 2005. p. 110.
  • Venâncio C, Castro BB, Ribeiro R, et al. Sensitivity of freshwater species under single and multigenerational exposure to seawater intrusion. Philos Trans R Soc, B. 2019;374:20180252.
  • Starke CWE, Jones CLC, Burr WS, et al. Interactive effects of water temperature and stoichiometric food quality on daphnia pulicaria. Freshw Biol 2021;66:256–265.
  • Timmons MB, Ebeling JM. Recirculating aquaculture, 2nd Ed. New York: Cayuga Aqua Ventures; 2010. 141.
  • Ebeling JM, Timmons MB, Bisogni JJ. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture. 2006;257:346–358.
  • Oliveira CYB, Oliveira CDL, Prasad R, et al. A multidisciplinary review of tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Reviews in Aquaculture. 2021;13:1594–1618.
  • Singh R, Birru R, Sibi G. Nutrient removal efficiencies of chlorella vulgaris from urban wastewater for reduced eutrophication. J Environ Prot (Irvine, Calif). 2017;08:1–11.
  • Burns C. The relationship between body size of filter-feeding cladocera and the maximum size of particle ingested. Limnol Oceanogr 1968;13:675–678.
  • Meenakshisundaram M, Sugantham F, Muthukumar C, et al. Metagenomic characterization of biofloc in the grow-out culture of genetically improved farmed tilapia (GIFT). Aquac Res 2021;52:4249–4262.
  • Robles-Porchas GR, Gollas-Galván T, Martínez-Porchas M, et al. The nitrification process for nitrogen removal in biofloc system aquaculture. Reviews in Aquaculture. 2020;12:2228–2249.
  • Furtado PS, Campos BR, Serra FP, et al. Effects of nitrate toxicity in the pacific white shrimp, litopenaeus vannamei, reared with biofloc technology (BFT). Aquac Int. 2015;23:315–327.
  • Ajayan KV, Harilal CC, Selvaraju M. Phycoremediation resultant lipid production and antioxidant changes in green microalgae chlorella sp. Int J Phytoremediation. 2018;20(11):1144–1151.
  • Alam Md A, Wan C, Zhao XQ, et al. Enhanced removal of Zn 2+ or Cd 2+ by the flocculating chlorella vulgaris JSC-7. J Hazard Mater 2015;289:38–45.
  • Mubashar M, Naveed M, Mustafa A, et al. Experimental investigation of chlorella vulgaris and enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater. Water (Basel). 2020;12:3034.
  • Peng FQ, Ying GG, Yang B, et al. Biotransformation of progesterone and norgestrel by two freshwater microalgae (scenedesmus obliquus and chlorella pyrenoidosa): transformation kinetics and products identification. Chemosphere. 2014;95:581–588.
  • Wang S, Wang X, Poon K, et al. Removal and reductive dechlorination of triclosan by chlorella pyrenoidosa. Chemosphere. 2013;92:1498–1505.
  • Escapa C, Coimbra RN, Paniagua S, et al. Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Res. 2016;18:127–134.
  • Zhang C, Li S, Ho SH. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. Bioresour Technol 2021;342:126056.
  • Naeem U, Qazi MA. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environmental Science and Pollution Research. 2019;27:27370–27382.
  • Turker H, Eversole AG, Brune DE. Filtration of green algae and cyanobacteria by Nile tilapia, oreochromis niloticus, in the partitioned aquaculture system. Aquaculture. 2003;215:93–101.
  • Neori A, Chopin T, Troell M, et al. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture. 2004;231:361–391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.