109
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Acute and sub-acute toxic effects of cadmium to freshwater tropical oligochaete Tubifex tubifex with special reference to oxidative stress and behavioural biomarkers

, , , &
Pages 868-880 | Received 21 May 2023, Accepted 21 Sep 2023, Published online: 04 Oct 2023

References

  • Gautam PK, Gautam RK, Banerjee S, et al. Heavy metals in the environment: fate, transport, toxicity and remediation technologies. Nova Sci Publ. 2016;60:101–130.
  • Mishra S, Bharagava RN, More N, et al. Heavy metal contamination: an alarming threat to environment and human health. Environ Biotechnol For Sustain Future. 2019;51:103–125.
  • Vareda JP, Valente AJ, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage 2019;246:101–118. doi:10.1016/j.jenvman.2019.05.126.
  • Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology. Experientia Supplementum. 2012;101:133–164.
  • Pandey G, Madhuri S. Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fishery Sci. 2014;2(2):17–23.
  • Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 1999;39(1):267–294. doi:10.1146/annurev.pharmtox.39.1.267.
  • Okocha R, Adedeji O. Overview of cadmium toxicity in fish. J Appl Sci Res. 2011;7(7):1195–1207.
  • Rahimzadeh MR, Rahimzadeh MR, Kazemi S, et al. Cadmium toxicity and treatment: an update. Caspian J Intern Med. 2017;8(3):135.
  • Jancic SA, Stosic BZ. Cadmium effects on the thyroid gland. Vitam Horm 2014;94:391–425. doi:10.1016/B978-0-12-800095-3.00014-6.
  • Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. doi:10.1016/j.heliyon.2020.e04691.
  • Alazemi B, Lewis J, Andrews E. Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ Technol. 1996;17(3):225–238. doi:10.1080/09593331708616381.
  • Ahmed MK, Baki MA, Islam MS, et al. Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environ Sci Pollut Res. 2015;22:15880–15890. doi:10.1007/s11356-015-4813-z.
  • Wieczorek J, Baran A, Urbański K, et al. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ Geochem Health. 2018;40:2325–2342. doi:10.1007/s10653-018-0100-5.
  • Viarengo A, Nott J. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparat Biochem Physiol Part C: Comparat Pharmacol. 1993;104(3):355–372. doi:10.1016/0742-8413(93)90001-2.
  • Wang M, Chen Z, Song W, et al. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bull Environ Contam Toxicol. 2021;106:65–74. doi:10.1007/s00128-020-03088-1.
  • Rainbow P, White S. Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia. 1989;174:245–262. doi:10.1007/BF00008164.
  • Ma Y, Ran D, Shi X, et al. Cadmium toxicity: a role in bone cell function and teeth development. Sci Total Environ. 2021;769:144646. doi:10.1016/j.scitotenv.2020.144646.
  • Wieloch M, Kamiński P, Ossowska A, et al. Do toxic heavy metals affect antioxidant defense mechanisms in humans? Ecotoxicol Environ Saf 2012;78:195–205. doi:10.1016/j.ecoenv.2011.11.017.
  • Bouché M-L, Habets F, Biagianti-Risbourg S, et al. Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol Environ Saf 2000;46(3):246–251. doi:10.1006/eesa.2000.1919.
  • Volpers M, Neumann D. Tolerance of two tubificid species (Tubifex tubifex and Limnodrilus hoffmeisteri) to hypoxic and sulfidic conditions in novel, long-term experiments. Archiv für Hydrobiologie. 2005;24:13–38.
  • Famme P, Knudsen J. Total heat balance study of anaerobiosis in Tubifex tubifex (Müller). J Compar Physiol B. 1984;154:587–591. doi:10.1007/BF00684412.
  • Grieshaber M, Hardewig I, Kreutzer U, et al. Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 1994;125:43–147.
  • Kaviraj A, Bhunia F, Saha N. Toxicity of methanol to fish, crustacean, oligochaete worm, and aquatic ecosystem. Int J Toxicol 2004;23(1):55–63. doi:10.1080/10915810490265469.
  • Dhara K, Saha NC, Maiti AK. Studies on acute and chronic toxicity of cadmium to freshwater snail Lymnaea acuminata (Lamarck) with special reference to behavioral and hematological changes. Environ Sci Pollut Res. 2017;24(35):27326–27333. doi:10.1007/s11356-017-0349-8.
  • Saha S, Chukwuka AV, Mukherjee D, et al. Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): a General Unified Threshold model of Survival (GUTS). Comparative Biochem Physiol Part C: Toxicol Pharmacol. 2022;262:109450. doi:10.1016/j.cbpc.2022.109450.
  • Dhara K, Saha S, Panigrahi AK, et al. Sensitivity of the freshwater tropical oligochaete, Branchiura sowerbyi (Beddard, 1892) to the grey list metal, Zinc. Int J Life Sci. 2020;8(1):93–101.
  • Sharma P, Garai P, Banerjee P, et al. Behavioral toxicity, histopathological alterations and oxidative stress in Tubifex tubifex exposed to aromatic carboxylic acids-acetic acid and benzoic acid: a comparative time-dependent toxicity assessment. Sci Total Environ. 2023;876:162739. doi:10.1016/j.scitotenv.2023.162739.
  • Lobo H, Méndez-Fernández L, Martínez-Madrid M, et al. Acute toxicity of zinc and arsenic to the warmwater aquatic oligochaete Branchiura sowerbyi as compared to its coldwater counterpart Tubifex tubifex (Annelida, Clitellata). J Soils Sediments. 2016;16:2766–2774. doi:10.1007/s11368-016-1497-z.
  • Dhara K, Saha S, Saha NC. Toxicity of selenium on the freshwater tropical worm, Branchiura sowerbyi Beddard, 1892. Bioinfolet-A Quarterly J Life Sci. 2020;17(2):346–354.
  • Finney D. Statistical logic in the monitoring of reactions to therapeutic drugs. Methods Inf Med. 1971;10(04):237–245. doi:10.1055/s-0038-1636052.
  • Saha S, Dhara K, Pal P, et al. Longer-term adverse effects of selenate exposures on hematological and serum biochemical variables in air-breathing fish Channa punctata (Bloch, 1973) and non-air breathing fish Ctenopharyngodon idella (Cuvier, 1844): an integrated biomarker response approach. Biol Trace Elem Res. 2022;201:1–16. doi:10.1007/s12011-022-03449-3.
  • Dhara K, Saha S, Chukwuka AV, et al. Fluoride sensitivity in freshwater snail, Bellamya bengalensis (Lamarck, 1882): an integrative biomarker response assessment of behavioral indices, oxygen consumption, haemocyte and tissue protein levels under environmentally relevant exposure concentrations. Environ Toxicol Pharmacol 2021;89:103789. doi:10.1016/j.etap.2021.103789.
  • Meller J, Becker W. Scintigraphic evaluation of functional thyroidal autonomy. Exp Clin Endocrinol 1998;106(S 04):S45–S51.
  • Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Biol Chem. 1952;195(1):133–140. doi:10.1016/S0021-9258(19)50881-X.
  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971;44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95(2):351–358. doi:10.1016/0003-2697(79)90738-3.
  • Tantulvesn M, Pornprapa P. Water management and waste water treatment in fish pond no. 1. Water quality management. Bangkok: Chulalongkorn Press; 1995.
  • de la Santé OM. International programme on chemical safety. Environ Health Criter. 1992;10:101.
  • Suterlin A. Pollutants and chemicals of aquatic animals prospective. Chem Senses Flavor. 1974;1:167–178. doi:10.1093/chemse/1.2.167.
  • Brönmark C, Hansson L-A. Aquatic chemical ecology: new directions and challenges for the future. Chem Ecol Aquat Syst. 2012;4:272–278.
  • Almeida J, Novelli E, Silva MDP, et al. Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environ Pollut. 2001;114(2):169–175. doi:10.1016/S0269-7491(00)00221-9.
  • Larsson Å, Bengtsson BE, Haux C. Disturbed ion balance in flounder, Platichthys flesus L. exposed to sublethal levels of cadmium. Aquat Toxicol. 1981;1(1):19–35. doi:10.1016/0166-445X(81)90004-7.
  • Tiwari M, Nagpure N, Saksena D, et al. Evaluation of acute toxicity levels and ethological responses under heavy metal cadmium exposure in freshwater teleost, Channa punctata (Bloch). Int J Aquat Sci. 2011;2:36–47.
  • Jayakumar P, Vattapparumbil IP. Patterns of cadmium accumulation in selected tissues of the catfish Clarias batrachus (Linn.) exposed to sublethal concentration of cadmium chloride. Vet Arh. 2006;76(2):167–177.
  • Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287–293. doi:10.1016/j.ajme.2017.09.001.
  • Mukherjee D, Saha S, Chukwuka AV, et al. Antioxidant enzyme activity and pathophysiological responses in the freshwater walking catfish, Clarias batrachus Linn under sub-chronic and chronic exposures to the neonicotinoid, Thiamethoxam®. Sci Total Environ. 2022;836:155716. doi:10.1016/j.scitotenv.2022.155716. PubMed Central PMCID: PMC 35526629.
  • Shukla P, Singh S, Dubey P, et al. Nitric oxide mediated amelioration of arsenic toxicity which alters the alternative oxidase (Aox1) gene expression in Hordeum vulgare L. Ecotoxicol Environ Saf 2015;120:59–65. doi:10.1016/j.ecoenv.2015.05.030.
  • Hemalatha D, Nataraj B, Rangasamy B, et al. DNA damage and physiological responses in an Indian major carp Labeo rohita exposed to an antimicrobial agent triclosan. Fish Physiol Biochem 2019;45:1463–1484. doi:10.1007/s10695-019-00661-2.
  • Wang Y, Branicky R, Noë A, et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–1928. doi:10.1083/jcb.201708007.
  • Wang M, Zhang X, Jia W, et al. Circulating glutathione peroxidase and superoxide dismutase levels in patients with epilepsy: a meta-analysis. Seizure. 2021;91:278–286. doi:10.1016/j.seizure.2021.07.001.
  • Legradi J, Di Paolo C, Kraak M, et al. An ecotoxicological view on neurotoxicity assessment. Environ Sci Eur. 2018;30:1–34. doi:10.1186/s12302-018-0173-x.
  • Chukwuka AV, Saha S, Mukherjee D, et al. Deltamethrin-induced respiratory and behavioral effects and adverse outcome pathways (AOP) in short-term exposed Mozambique tilapia, Oreochromis mossambicus. Toxics. 2022;10(11):701. doi:10.3390/toxics10110701.
  • Saha S, Mukherjee D, Dhara K, et al. Captan-induced toxicity and behavioural alterations on oligochaete worm, Branchiura sowerbyi. J Aquat Biol Fisheries. 2020;8:37–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.