65
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Zinc’s impact on the growth and laccase activity of Trametes pubescens and an equilibrium study of zinc adsorption

, ORCID Icon, &
Pages 991-1006 | Received 14 May 2023, Accepted 09 Oct 2023, Published online: 23 Oct 2023

References

  • Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescencs in the presence of copper. Appl Microbiol Biotechnol. 2001;56(1):225–232. doi:10.1007/s002530100636
  • Giardina P, Faraco V, Pezzella C, et al. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67(3):369–385. doi:10.1007/s00018-009-0169-1
  • Rodríguez-Couto S. Decolouration of industrial metal-complex dyes in successive batches by active cultures of Trametes pubescens. Biotechnol Rep. 2014;4:156–160. doi:10.1016/j.btre.2014.10.006
  • Salazar-López M, Rostro-Alanis MDJ, Castillo-Zacarías C, et al. Induced degradation of anthraquinone-based dye by laccase produced from Pycnoporus sanguineus (CS43). Water Air Soil Pollut. 2017;228(12):469. doi:10.1007/s11270-017-3644-6
  • Bayramoglu G, Salih B, Akbulut A, et al. Biodegradation of Cibacron Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using MALDI-TOF-MS: Toxicity assessment studies by Daphnia magna and Chlorella vulgaris. Ecotoxicol Environ Safe. 2019;170:453–460. doi:10.1016/j.ecoenv.2018.12.014
  • Lassouane F, Aït-Amar H, Amrani S, et al. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour Technol. 2019;271:360–367. doi:10.1016/j.biortech.2018.09.129
  • Galhaup C, Wagner H, Hinterstoisser B, et al. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb Technol. 2002;30(4):529–536. doi:10.1016/S0141-0229(01)00522-1
  • Vallee BL, Bertini I, Gary HB. Enzyme-based fiber optic zinc biosensor. A synopsis of zinc biology and pathology in zinc enzymes. Birkhauser Boston; 1986.
  • McCall KA, Huang CC, Fierke CA. Function and mechanism of zinc metalloenzymes. Nutr J. 2000;130(5):1437S–1446S. doi:10.1093/jn/130.5.1437S
  • Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990;29(24):5647–5659. doi:10.1021/bi00476a001
  • Bird AJ, Turner-Cavet JS, Lakey JH, et al. A carboxyl-terminal Cys2/His2-type zinc-finger motif in DNA primase influences DNA content in Synechococcus PCC 7942. J Biol Chem. 1998;273(33):21246–21252. doi:10.1074/jbc.273.33.21246
  • Chou AY, Archdeacon J, Kado CI. Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. Proc Natl Acad Sci. 1998;95(9):5293–5298. doi:10.1073/pnas.95.9.5293
  • Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021;199(1):344–370. doi:10.1007/s12011-020-02138-3
  • Gadd GM. Interactions of fungi with toxic metals. New Phytol. 1993;124:25–60. doi:10.1111/j.1469-8137.1993.tb03796.x
  • Aelion CM, Davis HT, McDermott S, et al. Soil metal concentrations and toxicity: Associations with distances to industrial facilities and implications for human health. Sci Total Environ. 2009;407:2216–2223. doi:10.1016/j.scitotenv.2008.11.033
  • Singh PC, Srivastava S, Shukla D, et al. Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In: Mycoremediation and environmental sustainability. Cham: Springer; 2018. p. 351–381.
  • Taamalli M, Ghabriche R, Amari T, et al. Comparative study of Cd tolerance and accumulation potential between Cakile maritima L.(halophyte) and Brassica juncea L. Ecol Eng. 2014;71:623–627. doi:10.1016/j.ecoleng.2014.08.013
  • Ferreira PAA, Bomfeti CA, Soares CRFDS, et al. Cupriavidus necator strains: zinc and cadmium tolerance and bioaccumulation. Sci Agric. 2018;75:452–460. doi:10.1590/1678-992x-2017-0071
  • Łukowski A, Dec D. Influence of Zn, Cd, and Cu fractions on enzymatic activity of arable soils. Environ Monit Assess. 2018;190(5):1–12. doi:10.1007/s10661-018-6651-1
  • Badura L, Piotrowska-Seget Z. Heavy metals in the environment and theirimp act on soil microorganisms. Chemia i Inżynieria Ekologiczna. 2000;7(11):1135–1142.
  • Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett. 2002;206(1):69–74. doi:10.1111/j.1574-6968.2002.tb10988.x
  • Chaperon S, Sauve S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol Biochem. 2007;39(9):2329–2338. doi:10.1016/j.soilbio.2007.04.004
  • Khan S, Hesham A, Qiao EL, et al. Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res. 2010;17(2):288–296. doi:10.1007/s11356-009-0134-4
  • Sayed E, El-Sayed MT, S A. Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon. 2020;6(9):e05048. doi:10.1016/j.heliyon.2020.e05048
  • Niku-Paavola ML, Raaska L, Itävaara M. Detection of white-rot fungi by a non-toxic stain. Mycol Res. 1990;94(1):27–31. doi:10.1016/S0953-7562(09)81260-4
  • Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids. J Am Chem Soc. 1917;39(9):1848–1906. doi:10.1021/ja02254a006
  • Sun L, Chen D, Wan S, et al. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Biores Technol. 2015;198:300–308. doi:10.1016/j.biortech.2015.09.026
  • Albert Q, Leleyter L, Lemoine M, et al. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere. 2018;196:386–392. doi:10.1016/j.chemosphere.2017.12.156
  • Lagergren SK. About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl. 1898;24:1–39.
  • Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–456. doi:10.1016/S0032-9592(98)00112-5
  • Weber Jr WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Division. 1963;89(2):31–59. doi:10.1061/JSEDAI.0000430
  • Hartikainen ES, Lankinen P, Rajasärkkä J, et al. Impact of copper and zinc on the growth of saprotrophic fungi and the production of extracellular enzymes. Boreal Environ Res. 2012;17:210–218.
  • Ezike TC, Ezugwu AL, Udeh JO, et al. Purification and characterisation of new laccase from Trametes polyzona WRF03. Biotechnol Rep. 2020;28:e00566.
  • Alharbi NK, Al-Zaban MI, Albarakaty FM, et al. Kinetic, isotherm and thermodynamic aspects of Zn2+ biosorption by Spirulina platensis: optimization of process variables by response surface methodology. Life. 2022;12(4):585. doi:10.3390/life12040585
  • Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 2003;37(18):4486–4496. doi:10.1016/S0043-1354(03)00409-3
  • Staats CC, Kmetzsch L, Schrank A, et al. Fungal zinc metabolism and its connections to virulence. Front Cell Infect Microbiol. 2013;3:65.
  • Eide DJ. Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta Mol Cell Res. 2006;1763(7):711–722. doi:10.1016/j.bbamcr.2006.03.005
  • Eide DJ. The SLC39 family of metal ion transporters. Pflügers Archiv. 2004;447(5):796–800. doi:10.1007/s00424-003-1074-3
  • Kılıç Z, Atakol O, Aras S, et al. Biosorption properties of zinc (II) from aqueous solutions by Pseudevernia furfuracea (L.) Zopf. J Air Waste Manag Assoc. 2014;64(10):1112–1121. doi:10.1080/10962247.2014.926299
  • Suazo-Madrid A, Morales-Barrera L, Aranda-García E, et al. Nickel (II) biosorption by Rhodotorula glutinis. J Ind Microbiol Biotechnol. 2011;38(1):51–64. doi:10.1007/s10295-010-0828-0
  • Taha MR, Ahmad K, Aziz AA, Chik Z. Geoenvironmental aspects of tropical residual soils. In: Huat BBK et al (eds) Tropical residual soils engineering. Balkema; 2009.p. 391-420.
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361–1403. doi:10.1021/ja02242a004
  • Pacheco JS, Monserratz S, Maria GAU. Ability of Phanerochaete Chrysosporium and Tramates versicolor to remove Zn2+, Cr3+, Pb2+ metal ions. Terra Lationamericana. 2015;33(3):190–198.
  • Marandi R, Doulati Ardejani F, Amir Afshar H. Biosorption of Lead (II) and Zinc (II) ions by pre-treated biomass of Phanerochaete chrysosporium. J Min Environ. 2010: 1.
  • Temkin MJ, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim URSS. 1940;12:217–222.
  • Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol. 2008;84:13–28. doi:10.1002/jctb.1999
  • Yan G, Viraraghavan T. Mechanism of biosorption of heavy metals by Mucor rouxii. Eng Life Sci. 2008;8:363–371. doi:10.1002/elsc.200820237
  • Słaba M, Długoński J. Efficient Zn2+ and Pb2+ uptake by filamentous fungus Paecilomyces marquandii with engagement of metal hydrocarbonates precipitation. Int Biodeterior Biodegrad. 2011;65(7):954–960. doi:10.1016/j.ibiod.2011.07.004
  • Gururajan K, Belur PD. Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environ Technol Innov. 2018;9:91–99. doi:10.1016/j.eti.2017.11.001
  • Chen SH, Cheow YL, Ng SL, et al. Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J Hazard Mater. 2019;362:394–402. doi:10.1016/j.jhazmat.2018.08.077
  • El-Gendy MAA, Ten NM, Ibrahim HAH, et al. Heavy metals biosorption from aqueous solution by endophytic Drechslera hawaiiensis of Morus alba L. derived from heavy metals habitats. Mycobiology. 2017;45(2):73–83. doi:10.5941/MYCO.2017.45.2.73
  • Sanghi R, Verma P. A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J. 2009;155(3):886–891. doi:10.1016/j.cej.2009.08.006
  • Siddiquee S, Rovina K, Azad SA, et al. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol. 2015;7(6):384–395. doi:10.4172/1948-5948.1000243
  • Igiri BE, Okoduwa SI, Idoko GO, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018.
  • Naveena J, Latha L. Fungal cell walls as protective barriers for toxic metals. Adv Med Biol. 2018;53:19.
  • Chen L, Zhang X, Zhang M, et al. Removal of heavy-metal pollutants by white rot fungi: A mini review. J Clean Prod. 2022;354:131681. doi:10.1016/j.jclepro.2022.131681
  • Maznah WW, Al-Fawwaz AT, Surif M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J Environ Sci. 2012;24(8):1386–1393. doi:10.1016/S1001-0742(11)60931-5
  • Sk D, Guha AK. Biosorption of chromium by Termitomyces clypeatus. Colloids Surf B: Biointerfaces. 2007;60(1):46–54. doi:10.1016/j.colsurfb.2007.05.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.