14
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effective sorption of strontium and cobalt ions from aqueous solutions using strong acid polystyrene gel cation exchange resin

&
Received 08 Dec 2023, Accepted 26 Apr 2024, Published online: 22 May 2024

References

  • Hamoud MA, Allan KF, Sanad WA, et al. Gamma irradiation induced preparation of poly(acrylamide–itaconic acid)/zirconium hydrous oxide for removal of Cs-134 radionuclide and methylene blue. J Radioanal Nucl Chem. 2014;302:169–178. doi:10.1007/s10967-014-3206-y
  • Abdel Rahman RO. Introduction to current trends in nuclear material research and technology, Ch (1). In: Nuclear Material Performance Rijeka. Croat Intech; 2016. p. 3–14.
  • Xu L, Wang J. The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit Rev Environ Sci Technol. 2017;47:1042–1105. doi:10.1080/10643389.2017.1342514
  • Abdel Rahman RO, Kozak MW, Hung Y-T. Radioactive pollution and control. In: Handbook of environment and waste management, groundwater pollution control. World Scientific;2014. p. 949–1027.
  • Hung Y-T, Wang LK, Shammas NK. Handbook of environment and waste management: air and water pollution control. World Scientific. 2012.
  • Abdel Rahman RO, Elmesawy M, Ashour I, et al. Remediation of NORM and TENORM contaminated sites. Environ Prog Sustain Energy. 2014;33:588–596. doi:10.1002/ep.11829
  • Ahmed IM, Hamed MM, Aglan RF, et al. Separation of strontium and yttrium in nitric acid solutions using zirconium titanium phosphate and Dowex exchangers. J Radioanal Nucl Chem. 2019;321:39–47. doi:10.1007/s10967-019-06583-w
  • Chen Y, Wang J. The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan. Nucl Eng Des. 2012;242:452–457. doi:10.1016/j.nucengdes.2011.11.004
  • Kulkarni SJ. Research and studies on cobalt removal from wastewater. Int J Res Rev. 2016;2237:41–44.
  • Chen Y, Wang J. Removal of radionuclide SR2+ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des. 2012;242:445–451. doi:10.1016/j.nucengdes.2011.10.059
  • Ahn JM, Kim S, Kim Y-S. Selection of priority management of rivers by assessing heavy metal pollution and ecological risk of surface sediments. Environ Geochem Health. 2020;42:1657–1669.
  • Osmanlioglu AE. Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl Eng Technol. 2018;50:886–889. doi:10.1016/j.net.2018.04.009
  • Brockmeyer B, Kraus UR, Theobald N. Accelerated solvent extraction (ASE) for purification and extraction of silicone passive samplers used for the monitoring of organic pollutants. Environ Sci Pollut Res. 2015;22:19887–19895. doi:10.1007/s11356-015-5192-1
  • Hurtado-Bermúdez S, Villa-Alfageme M, Mas JL, et al. Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials. Appl Radiat Isot. 2018;137:177–183. doi:10.1016/j.apradiso.2018.04.008
  • PôB V, Dalalibera A, Duminelli EC, et al. Correction to: Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ Sci Pollut Res. 2019;26:28490. doi:10.1007/s11356-018-3372-5
  • Hamed MM, Hassan RS, Metwally SS. Retardation behavior of alum industrial waste for cationic and anionic radionuclides. Process Saf Environ Prot. 2019;124:31–38. doi:10.1016/j.psep.2019.01.033
  • Gupta NK, Gupta A, Ramteke P, et al. Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. J Mol Liq. 2019;274:148–164. doi:10.1016/j.molliq.2018.10.134
  • Zhuang S, Yin Y, Wang J. Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. Nucl Eng Technol. 2018;50:211–215. doi:10.1016/j.net.2017.11.007
  • Wang J, Guo X. Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview. Crit Rev Environ Sci Technol. 2023: 1–20. doi:10.1080/10643389.2023.2286956
  • Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27:195–226. doi:10.1016/j.biotechadv.2008.11.002
  • Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv. 2006;24:427–451. doi:10.1016/j.biotechadv.2006.03.001
  • Wang J, Chen C. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol. 2014;160:129–141. doi:10.1016/j.biortech.2013.12.110
  • Mehta P, Vedachalam S, Sathyaraj G, et al. Fast sensing ammonia at room temperature with proline ionic liquid incorporated cellulose acetate membranes. J Mol Liq. 2020;305:112820. doi:10.1016/j.molliq.2020.112820
  • Aziz MHA, Othman MHD, Hashim NA, et al. Fabrication and characterization of mullite ceramic hollow fiber membrane from natural occurring ball clay. Appl Clay Sci. 2019;177:51–62. doi:10.1016/j.clay.2019.05.003
  • Jia F, Yin Y, Wang J. Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation. Prog Nucl Energy. 2018;103:20–27. doi:10.1016/j.pnucene.2017.11.008
  • El-Dessouky MI, Ibrahiem HH, El-Masry EH, et al. Removal of Cs+ and Co2+ ions from aqueous solutions using poly (acrylamide-acrylic acid)/kaolin composite prepared by gamma radiation. Appl Clay Sci. 2018;151:73–80. doi:10.1016/j.clay.2017.10.020
  • Aslim B, Türker AR, Atici T, et al. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp H1 isolated …  Bioresour Technol. 2008;99:4185–4191.
  • Elshazly AH, Konsowa AH. Removal of nickel ions from wastewater using a cation-exchange resin in a batch-stirred tank reactor. Desalination. 2003;158:189–193. doi:10.1016/S0011-9164(03)00450-8
  • Hamdaoui O. Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: Modeling. J Hazard Mater. 2009;161:737–746. doi:10.1016/j.jhazmat.2008.04.016
  • Abou-Mesalam MM, Abass MR, MA A-W, et al. Polymeric composite materials based on silicate: II. sorption and distribution studies of some hazardous metals on irradiated doped polyacrylamide acrylic acid. Desalin Water Treat. 2018;109:176–187. doi:10.5004/dwt.2018.22084
  • Gupta VK, Sharma G, Pathania D, et al. Nanocomposite pectin Zr(IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system. J Ind Eng Chem. 2015;21:957–964. doi:10.1016/j.jiec.2014.05.001
  • Hamed MM, Rizk SE, Nayl AA. Adsorption kinetics and modeling of gadolinium and cobalt ions sorption by an ion-exchange resin. Part Sci Technol. 2016;34:716–724. doi:10.1080/02726351.2015.1112328
  • Abass MR, Ibrahim AB, El-Masry EH, et al. Optical properties enhancement for polyacrylonitrile-ball clay nanocomposite by heavy metals saturation technique. J Radioanal Nucl Chem. 2021;329:849–855. doi:10.1007/s10967-021-07844-3
  • Hassan RS, Abass MR, Eid MA, et al. Sorption of some radionuclides from liquid waste solutions using anionic clay hydrotalcite sorbent. Appl Radiat Isot. 2021;178:109985. doi:10.1016/j.apradiso.2021.109985
  • Ahmed IM, Hamed MM, Metwally SS. Experimental and mathematical modeling of Cr(VI) removal using nano-magnetic Fe3O4-coated perlite from the liquid phase. Chinese J Chem Eng. 2020;28:1582–1590. doi:10.1016/j.cjche.2019.12.027
  • Metwally SS, Hassan HS, Samy NM. Impact of environmental conditions on the sorption behavior of 60Co and 152 + 154Eu radionuclides onto polyaniline/zirconium aluminate composite. J Mol Liq. 2019;287:110941. doi:10.1016/j.molliq.2019.110941
  • Ahmed IM, Aglan RF, Hamed MM. Removal of Arsenazo-III and Thorin from radioactive waste solutions by adsorption onto low-cost adsorbent. J Radioanal Nucl Chem. 2017;314:2253–2262. doi:10.1007/s10967-017-5586-2
  • Ghaly M, Abass MR, Mekawy ZA. Performance of molybdenum vanadate loaded on bentonite for retention of cesium-134 from aqueous solutions. Environ Sci Pollut Res. 2023;30:60432–60446. doi:10.1007/s11356-023-26607-z
  • Abass MR, El-Kenany WM, Eid MA. Sorption of cesium and gadolinium ions onto zirconium silico antimonate sorbent from aqueous solutions. Appl Radiat Isot. 2023;192:110542. doi:10.1016/j.apradiso.2022.110542
  • Chaudhry SA, Zaidi Z, Siddiqui SI. Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): modelling and process optimization. J Mol Liq. 2017;229:230–240. doi:10.1016/j.molliq.2016.12.048
  • Abass MR, El-Masry EH, El-Kenany WM. Gamma irradiation-induced preparation of polyacrylonitrile acrylamide nano-silica for removal of some hazardous metals. J Inorg Organomet Polym Mater. 2022;32:536–546. doi:10.1007/s10904-021-02156-1
  • Hamed MM, Holiel M, Ismail ZH. Removal of 134Cs and 152+154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochim Acta. 2016;104:399–413. doi:10.1515/ract-2015-2514
  • Abdel-Galil EA, Ibrahim AB, Abou-Mesalam MM. Sorption behavior of some lanthanides on polyacrylamide stannic molybdophosphate as organic-inorganic composite. Int J Ind Chem. 2016;7:231–240. doi:10.1007/s40090-016-0080-1
  • Abass MR, El-Masry EH, Ibrahim AB. Preparation, characterization, and applications of polyacrylonitrile/ball clay nanocomposite synthesized by gamma radiation. Environ Geochem Health. 2021;43:3169–3188. doi:10.1007/s10653-021-00813-5
  • Long P, Wang G, Zhang C, et al. A two-parameter model for the ion exchange process of ion-adsorption type rare earth ores. J Rare Earths. 2020;38:1251–1256.
  • Mansy MS, Eid MA, Breky MME, et al. Sorption behavior of 137Cs, 152+154Eu and 131Ba from aqueous solutions using inorganic sorbent loaded on talc. J Radioanal Nucl Chem. 2023;332:2971–2987. doi:10.1007/s10967-023-08977-3
  • Borai EH, Attallah MF, Elgazzar AH, et al. Isotherm and kinetic sorption of some lanthanides and iron from aqueous solution by aluminum silicotitante exchanger. Part Sci Technol. 2019;37:414–426. doi:10.1080/02726351.2017.1385550
  • Wang J, Guo X. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications. Chemosphere. 2022;309:136732. doi:10.1016/j.chemosphere.2022.136732
  • Guo X, Wang J. A general kinetic model for adsorption: Theoretical analysis and modeling. J Mol Liq. 2019;288:111100. doi:10.1016/j.molliq.2019.111100
  • Guo X, Wang J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J Mol Liq. 2019;296:111850. doi:10.1016/j.molliq.2019.111850
  • Abass MR, Abou-Lilah RA, Abou-Mesalam MM. Selective separation of cobalt ions from some fission products using synthesized inorganic sorbent. J Inorg Organomet Polym Mater. 2024: 1–14. https://doi.org/10.1007/s10904-023-02957-6
  • Abass MR, Youssef MA, Eid MA. Inorganic composites based on carboxymethyl cellulose: Preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions. Radiochim Acta. 2024;112:23–35. doi:10.1515/ract-2023-0214
  • Abass MR, Kandeel EM, Abou-Lilah RA, et al. Effective biosorption of cesium and strontium ions from aqueous solutions using silica loaded with aspergillus brasiliensis. Water, Air, Soil Pollut. 2024;235:61. doi:10.1007/s11270-023-06855-y
  • Abass MR, Breky MME, Maree RM. Removal of 137Cs and 90Sr from simulated low-level radioactive waste using tin(IV) vanadate sorbent and its potential hazardous parameters. Appl Radiat Isot. 2022;189:110417. doi:10.1016/j.apradiso.2022.110417
  • Abass MR, Mahrous SS, Mansy MS. Sorption behaviour of 137Cs and 152+154Eu onto bentonite phosphate modified with nickel: kinetics, isotherms, and chromatographic column application. Radiochim Acta. 2024;112:13–21. doi:10.1515/ract-2023-0168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.