63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Calcium reduces the effects of cadmium on the responses of biomarkers in freshwater fish (Oreochromis niloticus)

ORCID Icon & ORCID Icon
Pages 664-677 | Received 04 Jan 2024, Accepted 15 May 2024, Published online: 23 May 2024

References

  • Mance G. Pollution threat of heavy metals in aquatic environment. London: Elsevier; 1987; 363 pp.
  • Wood CM, Franklin NM, Niyogi S. The protective role of dietary calcium against cadmium uptake and toxicity in freshwater fish: an important role for the stomach. Environ Chem. 2006;3(6):389–394. doi:10.1071/EN06056
  • Wood CM, Farrel AP, Brauner CJ. Homeostasis and toxicology of non-essential metals. Fish Physiol. Vol. 31B. London: Academic Press; 2012b; pp 507.
  • Clark RB. Marine pollution. Oxford: Oxford Scientific Publications, Clarendon Press; 1989.
  • Heath AG. Water pollution and fish physiology. 2nd edition New York: CRC press; 1995; pp 359.
  • Rathore RS, Khangarot BS. Effects of water hardness and metal concentration on a freshwater Tubifex tubifex Muller. Water Air Soil Pollut. 2003;142(1):341–356. doi:10.1023/A:1022016021081
  • Ebrahimpour M, Alipour H, Rakhshah S. Influence of water hardness on acute toxicity of copper and zinc on fish. Toxicol Ind Health. 2010;26(6):361–365. doi:10.1177/0748233710369123
  • Saglam D, Atli G, Canli M. Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures to metals (Cd, Cu) in differing hardness. Ecotoxicol Environ Saf. 2013;92:79–86. doi:10.1016/j.ecoenv.2013.02.020
  • Winston GW. Oxidants and antioxidants in aquatic animals. Comp Biochem Physiol C-Pharma Toxicol Endocrin. 1991;100:173–176. doi:10.1016/0742-8413(91)90148-M
  • Dautremepuits C, Betoulle S, Vernet G. Antioxidant response modulated by copper in healthy or parasitized carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda). BBA-Gen Subjects. 2002;1573:4–8. doi:10.1016/S0304-4165(02)00328-8
  • Martínez-Álvarez RM, Morales AE, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish. 2005;15(1):75–88. doi:10.1007/s11160-005-7846-4
  • Kanak EG, Dogan Z, Eroglu A, et al. Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures. Fish Physiol Biochem. 2014;40(4):1083–1091.
  • Kocalar K, Canli EG, Canli M. Responses of oxidative stress biomarkers of freshwater fish (Oreochromis niloticus) exposed to Cr6+, Hg2+, Ni2+ and Zn2+ in differing calcium levels. Comp Biochem Physiol C Toxicol Pharmacol. 2023;267:109577. doi:10.1016/j.cbpc.2023.109577
  • Jorgensen SW. A derivative of encyclopedia of ecology. London: Ecotoxicology, Academic Press; 2010.
  • Elia AC, Galarini R, Taticchi MI, et al. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf. 2003;55:162–167. doi:10.1016/S0147-6513(02)00123-9
  • Barata C, Varob I, Navarro JC, et al. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol. 2005;140C:175–186.
  • Atli G, Canli M. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicol Environ Saf. 2010;73:1884–1889. doi:10.1016/j.ecoenv.2010.09.005
  • Topal A, Açıl G. The effects of imidacloprid on 8-hydroxy-2-deoxyguanosine (8-OHdG) and antioxidant parameters in gill and liver tissues of trout. Chem Ecol. 2022;38(4):374–388. doi:10.1080/02757540.2022.2061471
  • Canli EG, Canli M. Effects of in vivo exposures to nanoparticles (Al2O3, CuO, TiO2) on the activities of ATPases in the gill and muscle of freshwater mussel (Unio tigridis). Turk J Zool. 2022;46(4):377–384. doi:10.55730/1300-0179.3089
  • Karayakar F, Yurt Ö, Cicik B, et al. Accumulation and elimination of cadmium by the nile tilapia (Oreochromis niloticus) in differing temperatures and responses of oxidative stress biomarkers. Bull Environ Contam Toxicol. 2022;109(6):1126–1134. doi:10.1007/s00128-022-03616-1
  • Canli M, Stagg RM. The effects of in vivo exposure to cadmium, copper and zinc on the activities of gill ATPases in the Norway lobster, Nephrops norvegicus. Arch Environ Contam Toxicol. 1996;31:494–501. doi:10.1007/BF00212433
  • Thaker J, Chhaya J, Nuzhat S, et al. Effects of chromium (VI) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus dipes. Toxicology. 1996;112:237–244. doi:10.1016/0300-483X(96)86481-X
  • Atli G, Canli M. Alterations in ion levels of freshwater fish Oreochromis niloticus following acute and chronic exposures to five heavy metals. Turk J Zool. 2011;35:725–736.
  • Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222–1232. doi:10.1038/jcbfm.2012.35
  • Saxena TB, Zachariassen KE, Jorgensen L. Effects of ethoxyquin on the blood composition of turbot, Scophthalmus maximus L. Comp Biochem Physiol. 2000;127:1–9.
  • Griffitt RJ, Weil R, Hyndman KA, et al. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol. 2007;41(23):8178–8186. doi:10.1021/es071235e
  • Guo D, Bi H, Wang D, et al. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells. Int J Biochem Cell Biol. 2013;45(8):1849–1859. doi:10.1016/j.biocel.2013.06.002
  • Singh SP, Kumari M, Kumari SI, et al. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol. 2013;33(10):1165–1179. doi:10.1002/jat.2887
  • FAO. Inland Water Resources, & Aquaculture Service. Review of the State of World Aquaculture (No. 886).
  • Cioni C, De Merich D, Cataldi E, et al. Fine structure of chloride cells in freshwater-and seawater-adapted Oreochromis niloticus (Linnaeus) and Oreochromis mossambicus (Peters). J Fish Biol. 1991;39(2):197–209. doi:10.1111/j.1095-8649.1991.tb04356.x
  • Kamal AHMM, Mair GC. Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, oreochromis mossambicus and their hybrids. Aquaculture. 2005;247(1-4):189–201. doi:10.1016/j.aquaculture.2005.02.008
  • Yaqub A, Awan MN, Kamran M, et al. Evaluation of potential applications of dietary probiotic (Bacillus licheniformis SB3086): effect on growth, digestive enzyme activity, hematological, biochemical, and immune response of Tilapia (Oreochromis mossambicus). Turk J Fish Aquat Sci. 2021;22(5):TRJFAS19882. doi:10.4194/TRJFAS19882
  • Pepe N, Canli EG, Canli M. Salinity and/or nanoparticles (Al2O3, TiO2) affect metal accumulation and ATPase activity in freshwater fish (Oreochromis niloticus). Environ Toxicol Pharmacol. 2022;94:103931. doi:10.1016/j.etap.2022.103931
  • Lartillot S, Kedziora P, Athias A. Purification and characterization of a new fungal catalase. Prep Biochem. 1988;18:241–246.
  • Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250:5475–5480. doi:10.1016/S0021-9258(19)41206-4
  • Livingstone DR, Lips F, Martinez PG, et al. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar Biol. 1992;112:265–276. doi:10.1007/BF00702471
  • Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-Vinylpyridine. Anal Biochem. 1980;106:207–212. doi:10.1016/0003-2697(80)90139-6
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Biol Chem. 1974;249:7130–7139. doi:10.1016/S0021-9258(19)42083-8
  • Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-Vinylpyridine. Anal Biochem. 1980;106:207–212. doi:10.1016/0003-2697(80)90139-6
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi:10.1016/0003-2697(79)90738-3
  • Atkinson A, Gatemby AO, Lowe AG. The determination of inorganic ortophosphate in biological systems. Biochim Biophys Acta. 1973;320:195–204. doi:10.1016/0304-4165(73)90178-5
  • Lowry OH, Rosebrough NJ, Farra NJ, et al. Protein measurements with the folin phenol reagent. J Biol Chem. 1951;193:265–275. doi:10.1016/S0021-9258(19)52451-6
  • Canli M, Erdem C. Mercury toxicity and effects of exposure concentration and period on mercury accumulation in tissues of a tropical fish Tilapia nilotica (L.). Turk J Zool. 1994;18:233–239.
  • Omer SA, Elobeid MA, Fouad D, et al. Cadmium bioaccumulation and toxicity in tilapia fish (Oreochromis niloticus). J Anim Vet Adv. 2012;11(10):1601–1606. doi:10.3923/javaa.2012.1601.1606
  • Canli EG, Canli M. Low water conductivity increases the effects of copper on the serum parameters in fish (Oreochromis niloticus). Environ Toxicol Pharmacol. 2015;39(2):606–613. doi:10.1016/j.etap.2014.12.019
  • Eroglu A, Dogan Z, Kanak EG, et al. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism. Environ Sci Pollut Res. 2015;22:3229–3237. doi:10.1007/s11356-014-2972-y
  • Dogan A, Canli M. Investigations on the osmoregulation system of freshwater fish (Oreochromis niloticus) exposed to mercury in differing salinities. Turk J Fish Aquat Sci. 2019;19(12):1061–1068. doi:10.4194/1303-2712-v19_12_08
  • Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull. 2001;42:656–666. doi:10.1016/S0025-326X(01)00060-1
  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, et al. Heavy metal-induced oxidative stress in algae. J Phycol. 2003;39:1008–1018. doi:10.1111/j.0022-3646.2003.02-193.x
  • Cao L, Huang W, Liu J, et al. Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comp Biochem Physiol. 2010;151C:386–392.
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in induced oxidative damage. Curr Top Med Chem. 2001;1:529–539. doi:10.2174/1568026013394831
  • Dogan Z, Atli G, Canli M. Effects of lead on ATPases in tissues of freshwater fish (Oreochromis niloticus) in differing calcium levels. Turk J Fish Aquat Sci. 2015;15(2):223–233. doi:10.4194/1303-2712-v15_2_04
  • Saglam D, Atli G, Dogan Z, et al. Response of the antioxidant system of freshwater fish (Oreochromis niloticus) exposed to metals (Cd, Cu) in differing hardness. Turk J Fish Aquat Sci. 2014;14(1):43–52.
  • Nagalakshmi N, Prasad MNV. Copper-induced oxidative stress in Scenedesmus bijugatus: protective role of free radical scavengers. Bull Environ Contam Toxicol. 1998;61:623–628. doi:10.1007/s001289900806
  • Choi CY, An KW, An MI. Molecular characterization and mRNA expression of glutathione peroxidase and glutathione S-transferase during osmotic stress in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol A Mol Integr Physiol. 2008;149(3):330–337. doi:10.1016/j.cbpa.2008.01.013
  • Gopi N, Vijayakumar S, Thaya R, et al. Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. J Trace Elem Med Biol. 2019;55:170–179. doi:10.1016/j.jtemb.2019.06.011
  • Hossain Z, Hossain MS, Ema NS, et al. Heavy metal toxicity in Buriganga river alters the immunology of Nile tilapia (Oreochromis niloticus L). Heliyon. 2021;7(11):e08285. doi:10.1016/j.heliyon.2021.e08285
  • Asmaa M, Emam MA, Gaber HS, et al. Integrated use of biomarkers to assess the impact of heavy metal pollution on Solea aegyptiaca fish in Lake Qarun. Environ Sci Eur. 2022;34(1):1–24. doi:10.1186/s12302-021-00581-0
  • Mohamed AAR, El-Houseiny W, Abd Elhakeem EM, et al. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: role of curcumin supplemented diet. Ecotoxicol Environ Saf. 2020;188:109890. doi:10.1016/j.ecoenv.2019.109890
  • Qu R, Wang X, Wang Z, et al. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater. 2014;275:89–98. doi:10.1016/j.jhazmat.2014.04.051
  • Kulac B, Atli G, Canli M. Investigations on the ATPase activities and cadmium uptake in freshwater fish Oreochromis niloticus following exposures to cadmium in increased salinity. Turk J Fish Aquat Sci. 2012;12(4):861–869. doi:10.4194/1303-2712-v12_4_14
  • Park J, Kim S, Yoo J, et al. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull. 2014;85(2):526–531. doi:10.1016/j.marpolbul.2014.04.038
  • Handayani KS, Irawan B, Soegianto A. Short-term mercury exposure in tilapia (Oreochromis niloticus) at different salinities: impact on serum osmoregulation, hematological parameters, and Na+/K+-ATPase level. Heliyon. 2020;6(7):e04404. doi:10.1016/j.heliyon.2020.e04404
  • Canli EG, Canli M. Investigations of the nervous system biomarkers in the brain and muscle of freshwater fish (Oreochromis niloticus) following accumulation of nanoparticles in the tissues. Turk J Zool. 2020;44(2):90–103. doi:10.3906/zoo-1912-11
  • Lauren DJ, McDonald DG. Acclimation to copper by rainbow trout, Salmo gairdneri: biochemistry. Can J Fish Aquat Sci. 1987;44:105–111. doi:10.1139/f87-013
  • McGeer JC, Wood CM. Protective effects of water Cl- on physiological responses to waterborne silver in rainbow trout. Can J Fish Aquat Sci. 1998;55(11):2447–2454. doi:10.1139/f98-133
  • De La Torre FR, Salbian A, Ferrari L. Assessment of the pollution impact on biomarkers of effect of a freshwater fish. Chemosphere. 2007;68:1582–1590. doi:10.1016/j.chemosphere.2007.02.033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.