29
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Critical analysis of sustainable ways of removing insidious pollutants from the environment through phytoremediation techniques

, , &
Received 20 Sep 2023, Accepted 04 Jun 2024, Published online: 13 Jun 2024

References

  • Li L, Chen C, Li D, et al. What do we know about the production and release of persistent organic pollutants in the global environment? Environ Sci Adv. 2023;2:55–68. doi:10.1039/D2VA00145D
  • Rashid S, Zaid A, Per TS, et al. A critical review on phytoremediation of environmental contaminants in aquatic ecosystem. Rend Lincei Sci Fis Nat. 2023;34:749–766. doi:10.1007/s12210-023-01169-x
  • Jones KC. Persistent organic pollutants (POPs) and related chemicals in the global environment: some personal reflections. Environ Sci Technol. 2021;55:9400–9412. doi:10.1021/acs.est.0c08093
  • Gupta H, Dhiman S, Kumar A, et al. Photo- and Bio-degradation of selected persistent organic pollutants. Sep Purif Rev. 2024: 1–14. doi:10.1080/15422119.2024.2332953
  • Whitehead HD, Venier M, Wu Y, et al. Fluorinated compounds in North American cosmetics. Environ Sci Technol Lett [Internet]. 2021;8:538–544 [cited 2023 Jul 5]. doi:10.1021/acs.estlett.1c00240 Available from: https://www.smithsonianmag.com/smart-news/hold-blush-cosmetics-may-contain-toxic-forever-chemicals-180978036/
  • Arslan M, Imran A, Khan QM, et al. Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res. 2017;24:4322–4336. doi:10.1007/s11356-015-4935-3
  • Matei M, Zaharia R, Petrescu S-I, et al. Persistent organic pollutants (POPs): a review focused on occurrence and incidence in animal feed and cow milk. Agriculture. 2023;13:873. doi:10.3390/agriculture13040873
  • Beduk F, Aydin S, Ulvi A, et al. Fingerprint of persistent organic pollutants (POPs) in the environment. Ecol Assess Hum Health Eff. 2022: 153–161.
  • Jayaraj R, Megha P, Sreedev P. Organochlorine pesticides, their toxic effects on living organisms, and their fate in the environment. Interdiscip Toxicol. 2016;9:90–100. doi:10.1515/intox-2016-0012
  • Godduhn A, Duffy LK. Multi-generation health risks of persistent organic pollution in the far north: use of the precautionary approach in the Stockholm convention. Environ Sci Policy. 2003;6:341–353. doi:10.1016/S1462-9011(03)00061-3
  • Schnabel WE, White DM. The effect of mycorrhizal fungi on the fate of aldrin: phytoremediation potential. Int J Phytoremediation. 2001;3:221–241. doi:10.1080/15226510108500058
  • Kanthasamy AG, Kitazawa M, Kanthasamy A, et al. Dieldrin-induced neurotoxicity: relevance to Parkinson’s disease pathogenesis. Neurotoxicology. 2005;26:701–719. doi:10.1016/j.neuro.2004.07.010
  • Li J-G, Wu Y-N, Zhang L, et al. Dietary intake of polychlorinated dioxins, furans, and dioxin-like polychlorinated biphenyls from foods of animal origin in China. Food Addit Contam. 2007;24:186–193. doi:10.1080/02652030600970366
  • Wang G, Lu Y, Han J, et al. Hexachlorobenzene sources, levels, and human exposure in the environment of China. Environ Int. 2010;36:122–130. doi:10.1016/j.envint.2009.08.005
  • Barber JL, Sweetman AJ, van Wijk D, et al. Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Sci Total Environ. 2005;349:1–44. doi:10.1016/j.scitotenv.2005.03.014
  • Zitko V. Chlorinated pesticides: aldrin, DDT, endrin, dieldrin, mirex. persistent organic pollutants. Berlin/Heidelberg: Springer-Verlag. p. 47–90.
  • de Geus HJ, Besselink H, Brouwer A, et al. Environmental occurrence, analysis, and toxicology of toxaphene compounds. Environ Health Perspect. 1999;107:115–144.
  • Matsumoto E, Kawanaka Y, Yun S-J, et al. Bioremediation of the organochlorine pesticides, dieldrin, and endrin, and their occurrence in the environment. Appl Microbiol Biotechnol. 2009;84:205–216. doi:10.1007/s00253-009-2094-5
  • Borja J, Taleon DM, Auresenia J, et al. Polychlorinated biphenyls and their biodegradation. Process Biochem. 2005;40:1999–2013. doi:10.1016/j.procbio.2004.08.006
  • Safe SH. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol. 1994;24:87–149. doi:10.3109/10408449409049308
  • Zenker A, Cicero MR, Prestinaci F, et al. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage. 2014;133:378–387. doi:10.1016/j.jenvman.2013.12.017
  • Mishra A, Kumari M, Swati, et al. Persistent organic pollutants in the environment: risk assessment, hazards, and mitigation strategies. Bioresour Technol Rep. 2022;19:101143. doi:10.1016/j.biteb.2022.101143
  • Park EY, Park E, Kim J, et al. Impact of environmental exposure to persistent organic pollutants on lung cancer risk. Environ Int. 2020;143:105925. doi:10.1016/j.envint.2020.105925
  • Mitton FM, Miglioranza KSB, Gonzalez M, et al. Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT-polluted soils. Ecol Eng. 2014;71:501–508. doi:10.1016/j.ecoleng.2014.07.069
  • Jorgenson JL. Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ Health Perspect. 2001;109:113–139.
  • Kathleen F, Arcaro YYD. Toxaphene is antiestrogenic in a human breast-cancer cell assay. J Toxicol Environ Health A. 2000;59:197–210. doi:10.1080/009841000156970
  • Otani T, Seike N, Sakata Y. Differential uptake of dieldrin and endrin from the soil by several plant families and Cucurbita genera. Soil Sci Plant Nutr. 2007;53:86–94. doi:10.1111/j.1747-0765.2007.00102.x
  • Xiao P, Mori T, Kamei I, et al. Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett. 2011;314:140–146. doi:10.1111/j.1574-6968.2010.02152.x
  • Schimmel SC, Patrick JM, Heptachlor FJ. Toxicity to and uptake by several estuarine organisms. J Toxicol Environ Health. 1976;1:955–965. doi:10.1080/15287397609529397
  • Harvey PJ, Campanella BF, Castro PML, et al. Phytoremediation of polyaromatic hydrocarbons, anilines, and phenols. Environ Sci Pollut Res [Internet]. 2002;9:29–47 [cited 2023 Mar 1]. Available from: https://link.springer.com/article/10.1007BF02987315.
  • Ash P, Sullivan D, Kothurkar NK, et al. Rehabilitating former landfill sites: a case study in habitat restoration. In: 2013 IEEE Global Humanitarian Technology Conference (GHTC); IEEE; 2013. p. 452–456.
  • Chaney RL, Malik M, Li YM, et al. Phytoremediation of soil metals. Curr Opin Biotechnol. 1997;8:279–284. doi:10.1016/S0958-1669(97)80004-3
  • Chandran S. Managing former landfill sites a case study of ecorestoration from Kochi, Kerala. Green Chem Technol Lett. 2016;1:82–85. doi:10.18510/gctl.2015.1113
  • Salt DE, Blaylock M, Kumar NPBA, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol. 1995;13:468–474. doi:10.1038/nbt0595-468
  • Chandrasekhar K. Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. J Hazard Mater. 2004;108:111–117.
  • Abhilash PC, Pandey VC, Srivastava P, et al. Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater. 2009;170:791–797. doi:10.1016/j.jhazmat.2009.05.035
  • Ghosh M, Singh SP. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ. 2005;6:214–231.
  • Arthur EL, Rice PJ, Rice PJ, et al. Phytoremediation—an overview. CRC Crit Rev Plant Sci. 2005;24:109–122. doi:10.1080/07352680590952496
  • Nagarajan P, Sruthy KS, Lal VP, et al. Biological treatment of domestic wastewater by selected aquatic plants. In: 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy); IEEE; 2017. p. 1–4.
  • Bever JD, Schultz PA, Pringle A, et al. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why: the high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. Bioscience. 2001;51:923–931. doi:10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2
  • Bhadra R, Wayment DG, Hughes JB, et al. Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol. 1999;33:446–452. doi:10.1021/es980635m
  • Li HY, Wei DQ, Shen M, et al. Endophytes and their role in phytoremediation. Fungal Divers [Internet]. 2012;54:11–18 [cited 2023 Feb 2]. Available from: https://link.springer.com/article/10.1007s13225-012-0165-x
  • Hussain I, Aleti G, Naidu R, et al. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ. 2018;628–629:1582–1599. doi:10.1016/j.scitotenv.2018.02.037
  • Bittsánszky A, Gyulai G, Gullner G, et al. In vitro breeding of grey poplar (Populus × canescens) for phytoremediation purposes. J Chem Technol Biotechnol. 2009;84:890–894. doi:10.1002/jctb.2166
  • Tonelli FCP, Tonelli FMP, Lemos MS, et al. Mechanisms of phytoremediation. Phytoremediation. Elsevier. 2022: 37–64. doi:10.1016/B978-0-323-89874-4.00023-6
  • Peer WA, Baxter IR, Richards EL, et al. Phytoremediation and hyperaccumulator plants. Top Curr Genet [Internet]. 2006;14:299–340 [cited 2023 Feb 2]. Available from: https://link.springer.com/chapter/10.10074735_100
  • Ali N, Sorkhoh N, Salamah S, et al. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manage. 2012;93:113–120. doi:10.1016/j.jenvman.2011.08.014
  • Thakur S, Choudhary S, Majeed A, et al. Insights into the molecular mechanism of arsenic phytoremediation. J Plant Growth Regul [Internet]. 2019;39(2):532–543 [cited 2023 Feb 4]. Available from: https://link.springer.com/article/10.1007s00344-019-10019-w
  • Sharma P, Jha AB, Dubey RS. Arsenic toxicity and tolerance mechanisms in crop plants. Handb Plant Crop Physiol [Internet]. 2021: 831–873 [cited 2023 Feb 4]. Available from: https://www.taylorfrancis.com/chapters/edit/10.12019781003093640-46/arsenic-toxicity-tolerance-mechanisms-crop-plants-pallavi-sharma-ambuj-bhushan-jha-rama-shanker-dubey
  • Almeida M, Rissato S, Galhiane M, et al. In vitro phytoremediation of persistent organic pollutants by Helianthus annuus L. Plants. Quim Nova. 2018;41(3):200.
  • Ye M, Sun M, Liu Z, et al. Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. J Environ Manage. 2014;141:161–168. doi:10.1016/j.jenvman.2014.03.025
  • Isleyen M, Sevim P. Accumulation of weathered P, P ′-DDE in xylem sap of grafted watermelon. Int J Phytoremediation. 2012;14:403–414. doi:10.1080/15226514.2011.620655
  • Marchiol L, Sacco P, Assolari S, et al. Reclamation of polluted soil: phytoremediation potential of crop-related BRASSICA species. Water Air Soil Pollut [Internet]. 2004;158:345–356 [cited 2023 Feb 4]. Available from: https://link.springer.com/article/10.1023B:WATE.0000044862.51031.fb
  • Rissato SR, Galhiane MS, Fernandes JR, et al. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides. Biomed Res Int. 2015;2015:1–8. doi:10.1155/2015/549863
  • Lunney AI, Zeeb BA, Reimer KJ. Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ Sci Technol. 2004;38:6147–6154. doi:10.1021/es030705b
  • Mamirova A, Pidlisnyuk V, Amirbekov A, et al. Phytoremediation potential of Miscanthus sinensis and. in organochlorine pesticides contaminated soil amended by Tween 20 and Activated carbon. Environ Sci Pollut Res. 2021;28:16092–16106. doi:10.1007/s11356-020-11609-y
  • Chu WK, Wong MH, Zhang J. Accumulation, distribution, and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: I. Environ Geochem Health. 2006: 159–168. doi:10.1007/s10653-005-9027-8
  • Mamirova A, Baubekova A, Pidlisnyuk V, et al. Phytoremediation of soil contaminated by organochlorine pesticides and toxic trace elements: prospects and limitations of paulownia tomentosa. Toxics. 2022;10:465. doi:10.3390/toxics10080465
  • Nenman DV, Milam C, Michael DP. Potential of sweet potato (I. Batatas) for phytoremediation of heavy metals and organochlorine residues from abandoned mine agricultural areas of riyom LGA, Plateau State, Nigeria. Am J Appl Chem. 2022;10:104–113.
  • Wang Y, Oyaizu H. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. J Hazard Mater. 2009;168:760–764. doi:10.1016/j.jhazmat.2009.02.082
  • Oh K, Li T, Cheng H, et al. Development of profitable phytoremediation of contaminated soils with biofuel crops. J Environ Prot (Irvine Calif). 2013;04(04):58–64.
  • Huong NTT, Van TT, Truong P, et al. Effectiveness of vetiver grass in phytostabilization and/or phytoremediation of dioxin-contaminated soil at Bien Hoa airbase, Vietnam - an overview and preliminary result. 2015.
  • Poltorak MR. Field and greenhouse studies of phytoremediation with California native plants for soil contaminated with petroleum hydrocarbons, PAHs, PCBs, chlorinated dioxins/furans, and heavy metals. San Luis Obispo (CA): California Polytechnic State University; 2014.
  • Wyrwicka A, Urbaniak M, Przybylski M. The response of cucumber plants (Cucumis sativus L.) to the application of PCB-contaminated sewage sludge and urban sediment. PeerJ [Internet]. 2019;7 [cited 2023 Feb 4]. Available from: /pmc/articles/PMC6500380/
  • Yanitch A, Kadri H, Frenette-Dussault C, et al. A four-year phytoremediation trial to decontaminate soil polluted by wood preservatives: phytoextraction of arsenic, chromium, copper, dioxins and furans. Int J Phytoremediation. 2020;22:1505–1514. doi:10.1080/15226514.2020.1785387
  • Daniel J, Nguyen S, Chowdhury MAR, et al. Temperature and pressure wireless ceramic sensor (distance=0.5 meter) for extreme environment applications. Sensors. 2021;21:6648. doi:10.3390/s21196648
  • Chuluun B, Iamchaturapatr J, Rhee J-S. Phytoremediation of organophosphorus and organochlorine pesticides by acorus gramineus. Environ Eng Res. 2009;14:226–236. doi:10.4491/eer.2009.14.4.226
  • Reynoso-Cuevas L, Gallegos-Martínez ME, Cruz-Sosa F, et al. Phytoremediation and removal mechanisms in Bouteloua curtipendula growing in sterile hydrocarbon spiked cultures. [Internet]. 2011;13:613–625 [cited 2023 Feb 4]. Available from: https://www.tandfonline.com/doi/abs/10.108015226514.2010.525550
  • Liu WT, Ni JC, Zhou QX. Uptake of heavy metals by trees: prospects for phytoremediation. Mater Sci Forum. 2013;743–744:768–781.
  • Haller H, Jonsson A, Lacayo Romero M, et al. Bioaccumulation and translocation of field-weathered toxaphene and other persistent organic pollutants in three cultivars of amaranth (A. cruentus ‘R127 México’, A. cruentus ‘Don León’ y A. caudatus ‘CAC 48 Perú’) – A field study from former cotton fields in Chinandega, Nicaragua. Ecol Eng. 2018;121:65–71. doi:10.1016/j.ecoleng.2017.07.019
  • Rissato SR, Galhiane MS, Fernandes JR, et al. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides. Biomed Res Int. 2015;2015. doi:10.1155/2015/549863
  • Ahmad B, Zaid A, Jaleel H, et al. Nanotechnology for phytoremediation of heavy metals: mechanisms of nanomaterial-mediated alleviation of toxic metals. Adv Phytonanotechnol. Elsevier. 2019: 315–327. doi:10.1016/B978-0-12-815322-2.00014-6
  • Rai PK, Kim K-H, Lee SS, et al. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ. 2020;705:135858. doi:10.1016/j.scitotenv.2019.135858
  • Yang X, Feng Y, He Z, et al. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol. 2005;18:339–353. doi:10.1016/j.jtemb.2005.02.007
  • Devi NL. Persistent organic pollutants (POPs): environmental risks, toxicological effects, and bioremediation for environmental safety and challenges for future research. bioremediation of industrial waste for environmental safety. Singapore: Springer Singapore; 2020. p. 53–76.
  • Barac T, Taghavi S, Borremans B, et al. Engineered endophytic bacteria improve the phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol [Internet]. 2004;22(5):583–588 [cited 2023 Feb 4]. doi:10.1038/nbt960 Available from: https://www.nature.com/articles/nbt960
  • Beattie GA, Seibel JR. Uptake and localization of gaseous phenol and p-cresol in plant leaves. Chemosphere. 2007;68:528–536. doi:10.1016/j.chemosphere.2006.12.070
  • Lin Q, Wang Z, Ma S, et al. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ. 2006;368:814–822. doi:10.1016/j.scitotenv.2006.03.024
  • Alarcón A, Davies FT, Autenrieth RL, et al. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Int J Phytoremediation. 2008;10:251–263. doi:10.1080/15226510802096002
  • van Dillewijn P, Couselo JL, Corredoira E, et al. Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol. 2008;42:7405–7410. doi:10.1021/es801231w
  • Angelini VA, Orejas J, Medina MI, et al. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots. J Hazard Mater. 2011;185:269–274. doi:10.1016/j.jhazmat.2010.09.028
  • Park S, Kim KS, Kim J-T, et al. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals. J Environ Sci. 2011;23:2034–2041. doi:10.1016/S1001-0742(10)60670-5
  • Ahmad F, Iqbal S, Anwar S, et al. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J Hazard Mater. 2012;237–238:110–115. doi:10.1016/j.jhazmat.2012.08.006
  • Memarian R, Ramamurthy AS. Effects of surfactants on rhizodegradation of oil in contaminated soil. J Environ Sci Health, A. 2012;47:1486–1490. doi:10.1080/10934529.2012.673311
  • Ahammed GJ, Ruan Y-P, Zhou J, et al. Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere. 2013;90:2645–2653. doi:10.1016/j.chemosphere.2012.11.041
  • Abhilash PC, Singh B, Srivastava P, et al. Remediation of lindane by Jatropha curcas L: utilization of multipurpose species for rhizoremediation. Biomass Bioenergy. 2013;51:189–193. doi:10.1016/j.biombioe.2013.01.028
  • Afzal M, Khan S, Iqbal S, et al. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeterior Biodegrad. 2013;85:331–336. doi:10.1016/j.ibiod.2013.08.022
  • Andreolli M, Lampis S, Poli M, et al. Endophytic Burkholderia fungorum DBT1 can improve the phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere. 2013;92:688–694. doi:10.1016/j.chemosphere.2013.04.033
  • Chigbo C, Batty L. Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z. mays. Water Air Soil Pollut. 2015;226:74. doi:10.1007/s11270-014-2277-2
  • Pillai HPS, Kottekottil J. Nano-Phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot (Irvine, Calif). 2016;6:734–744.
  • Guarino C, Sciarrillo R. Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecol Eng. 2017;99:70–82. doi:10.1016/j.ecoleng.2016.11.051
  • Luo J, Cai L, Qi S, et al. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator-assisted phytoremediation. Ecotoxicol Environ Saf. 2018;149:241–247. doi:10.1016/j.ecoenv.2017.12.005
  • Sharma P, Singh SP, Pandey S, et al. Role of potential native weeds and grasses for phytoremediation of endocrine-disrupting pollutants discharged from pulp paper industry waste. Biorem Pollutants. Elsevier. 2020: 17–37. doi:10.1016/B978-0-12-819025-8.00002-8
  • Roe RAL, MacFarlane GR. The potential of saltmarsh halophytes for phytoremediation of metals and persistent organic pollutants: An Australian perspective. Mar Pollut Bull. Elsevier Ltd. 2022;180:113811.
  • Song X, Li C, Chen W. Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. Ecotoxicol Environ Saf. 2022;234:113389. doi:10.1016/j.ecoenv.2022.113389
  • Liu H, Huang X, Fan X, et al. Phytoremediation of crude oil-contaminated sediment using Suaeda heteroptera enhanced by Nereis succinea and oil-degrading bacteria. 2022. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=bijp20
  • Li X, Kang X, Zou J, et al. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L.–mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. Ecotoxicol Environ Saf. 2023;249:114461. doi:10.1016/j.ecoenv.2022.114461
  • Amiri MJ, Shabani A, Javidi A. Phytoremediation potential of rapeseed in phenanthrene-contaminated soils under different irrigation regimes and pumice levels. Irrigation Drainage. 2023;72:90–104. doi:10.1002/ird.2759
  • Ma D, Xu J, Zhou J, et al. Using sweet sorghum varieties for the phytoremediation of petroleum-contaminated salinized soil: a preliminary study based on Pot experiments. Toxics. 2023;11:208. doi:10.3390/toxics11030208
  • Lei Y, Carlucci L, Rijnaarts H, et al. Phytoremediation of micropollutants by Phragmites australis, Typha angustifolia, and Juncus effuses. Int J Phytoremediation. 2023;25:82–88. doi:10.1080/15226514.2022.2057422
  • Ajeesh Krishna TP, Maharajan T, Antony Ceasar S. Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes. Mol Biol Rep. 2023;50:6147–6157. doi:10.1007/s11033-023-08521-2
  • Futughe AE, Jones H, Purchase D. A novel technology of solarization and phytoremediation enhanced with biosurfactant for the sustainable treatment of PAH-contaminated soil. Environ Geochem Health. 2023;45:3847–3863. doi:10.1007/s10653-022-01460-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.