16
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficacy evaluation of biochar and activated carbon as carriers of bacterial inoculants in the remediation of multi-metal polluted soil

, , , , &
Received 09 Dec 2023, Accepted 18 Jun 2024, Published online: 05 Jul 2024

References

  • Jeddi K, Siddique KH, Chaieb M, et al. Physiological and biochemical responses of lawsonia inermis L. to HMs pollution in arid environments. S Afr J Bot. 2021;143:7–16. doi:10.1016/j.sajb.2021.07.015
  • Li L, Zhang Y, Ippolito JA, et al. Lead smelting alters wheat flour heavy metals concentrations and health risks. J Environ Qual. 2021;50(2):454–464.
  • Zhao Y, Gao L, Zha F, et al. Research on HMs level and co-occurrence network in typical ecological fragile area. J Environ Health Sci Eng. 2021;19(1):531–540. doi:10.1007/s40201-021-00625-w
  • Ahmadi M, Akhbarizadeh R, Haghighifard NJ, et al. Geochemical determination and pollution assessment of HMs in agricultural soils of south western of Iran. J Environ Health Sci Eng. 2019;17(2):657–669. doi:10.1007/s40201-019-00379-6
  • Marta J, Rorat A, Grobelak A. Enzymatic assays confirm the toxicity reduction after manure treatment of HMs contaminated soil. S Afr J Bot. 2019;124:47–53. doi:10.1016/j.sajb.2019.04.035
  • Radziemska M, Gusiatin ZM, Bilgin A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with Pb. Ecol Eng. 2017;102:490–500. doi:10.1016/j.ecoleng.2017.02.028
  • Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of HMs contaminated soils: a review. Ecotoxicol Environ Saf. 2016;126:111–121. doi:10.1016/j.ecoenv.2015.12.023
  • El-Meihy RM, Abou-Aly HE, Youssef AM, et al. Efficiency of HMs-tolerant plant growth promoting bacteria for alleviating HMs toxicity on sorghum. Environ Exp Bot 2019;162:295–301. doi:10.1016/j.envexpbot.2019.03.005
  • Khan I, Iqbal M, Shafiq F. Phytomanagement of leadcontaminated soils: critical review of new trends and future prospects. Int J Environ Sci Technol. 2019;16:6473–6488. doi:10.1007/s13762-019-02431-2
  • Raskin I, Ensley BD. Phytoremediation of toxic metals using plants to clean up the environment. New York: John Wiley & Sons Inc; 2000.
  • Metanat K, Ghasemi-Fasaei R, Ronaghi A, et al. Lead phytostabilization and cationic micronutrient uptake by maize as influenced by Pb levels and application of low molecular weight organic acids. Commun Soil Sci Plant Anal. 2019;50(15):1887–1896. doi:10.1080/00103624.2019.1648493
  • Komárek M, Tlustoš P, Száková J, et al. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere. 2007;67(4):640–651. doi:10.1016/j.chemosphere.2006.11.010
  • Razmi B, Ghasemi-Fasaei R, Ronaghi A, et al. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. Ecotoxicol Environ Saf. 2021;207:111315. doi:10.1016/j.ecoenv.2020.111315
  • Mohrazi A, Ghasemi-Fasaei R, Mojiri A, et al. Investigating an electro-bio-chemical phytoremediation of multi-metal polluted soil by maize and sunflower using RSM-based optimization methodology. Environ Exp Bot. 2023 Jul 1;211:105352. doi:10.1016/j.envexpbot.2023.105352
  • Shahkolaie SS, Baranimotlagh M, Dordipour E, et al. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a Cd-contaminated calcareous soil. S Afr J Bot. 2020;128:132–140. doi:10.1016/j.sajb.2019.10.007
  • Gu JF, Zhou H, Yang WT, et al. Effects of an additive (hydroxyapatite–biochar–zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants. Environ Sci Pollut Res Int. 2018;25:8608–8619. doi:10.1007/s11356-017-0921-2
  • Peng H, Gao P, Chu G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut. 2017;229:846–853. doi:10.1016/j.envpol.2017.07.004
  • Li X, Cao Y, Xiao J, et al. Bamboo biochar greater enhanced Cd/Zn accumulation in salix psammophila under non-flooded soil compared with flooded. Biochar. 2022;4(1):1–17. doi:10.1007/s42773-021-00127-w
  • Zibaei Z, Ghasemi-Fasaei R, Ronaghi A, et al. Effective immobilisation of chromium in a polluted calcareous soil using modified biochar and bacterial inoculation. Chem Ecol. 2020;36(9):827–838. doi:10.1080/02757540.2020.1789117
  • He L, Zhong H, Liu G, et al. Remediation of HMs contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut. 2019;252:846–855. doi:10.1016/j.envpol.2019.05.151
  • Gonzaga MIS, de Jesus Santos JC, Ganassali Junior LF, et al. Copper uptake, physiological response, and phytoremediation potential of Brassica juncea under biochar application. Int J Phytoremediation. 2022;24(5):474–482. doi:10.1080/15226514.2021.1954875
  • Mailakeba CD, Rajashekhar Rao BK. Biochar application does Not improve the biochemical properties of Ni contaminated soil. Bull Environ Contam Toxicol. 2020;105(4):633–638. doi:10.1007/s00128-020-03001-w
  • Zhu M, Zhang L, Zheng L, et al. Typical soil redox processes in pentachlorophenol polluted soil following biochar addition. Front Microbiol. 2018;9:579. doi:10.3389/fmicb.2018.00579
  • De Lima Veloso V, da Silva FBV, Dos Santos NM, et al. A, phytoattenuation of Cd, Pb, and Zn in a slag-contaminated soil amended with rice straw biochar and grown with energy maize. Environ Manag. 2022;69:196–212. doi:10.1007/s00267-021-01530-6
  • Qin P, Wang HL, Yang X, et al. Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate, Cd, and Pb from co-contaminated soils. Chemosphere. 2018;198:450–459. doi:10.1016/j.chemosphere.2018.01.162
  • Ducey TF, Novak JM, Sigua GC, et al. Microbial response to designer biochar and compost treatments for mining impacted soils. Biochar. 2021;3(3):299–314. doi:10.1007/s42773-021-00093-3
  • Hammer EC, Forstreuter M, Rillig MC, et al. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl Soil Ecol 2015;96:114–121. doi:10.1016/j.apsoil.2015.07.014
  • Zhang H, Voroney RP, Price GW. Effects of biochar amendments on soil microbial biomass and activity. J Environ Qual. 2014;43(6):2104–2114. doi:10.2134/jeq2014.03.0132
  • Ahmad AA, Al-Raggad M, Shareef N. Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: a review. Carbon Letters. 2021;31(4):1–15.
  • Blachnio M, Derylo-Marczewska A, Charmas B, et al. Activated carbon from agricultural wastes for adsorption of organic pollutants. Molecules. 2020;25(21):5105. doi:10.3390/molecules25215105
  • Ratan JK, Kaur M, Adiraju B. Synthesis of activated carbon from agricultural waste using a simple method: characterization, parametric and isotherms study. Mater Today Proc. 2018;5(2):3334–3345. doi:10.1016/j.matpr.2017.11.576
  • Azargohar R, Dalai AK. Steam and KOH activation of biochar: experimental and modeling studies. Micropor. Mesopor. Mater. 2008;110:413–421. doi:10.1016/j.micromeso.2007.06.047
  • Aworn A, Thiravetyan P, Nakbanpote W. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores. J. Anal. Appl. Pyrol. 2008;82:279–285. doi:10.1016/j.jaap.2008.04.007
  • Kołtowski M, Oleszczuk P. Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and HMs. Environ Toxicol Chem. 2016;35(5):1321–1328. doi:10.1002/etc.3246
  • Boechat CL, Quadros PDD, Giovanella P, et al. Metal-resistant rhizobacteria change soluble-exchangeable fraction in multi-metal-contaminated soil samples. Revista Brasileira Rev Bras Cienc Solo. 2018;42:e0170266. doi:10.1590/18069657rbcs20170266
  • Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ. Sci. Pollut. Res. Int. 2020;27:27563–27581. doi:10.1007/s11356-020-08903-0
  • Atuchin VV, Asyakina LK, Serazetdinova YR, et al. Microorganisms for bioremediation of soils contaminated with heavy metals. Microorganisms. 2023;11(4):864. doi:10.3390/microorganisms11040864
  • Liu S, Yang B, Liang Y, et al. Prospect of phytoremediation combined with other approaches for remediation of HMs-polluted soils. Environ Sci Pollut Res Int. 2020;27(14):1–17.
  • Hale L, Luth M, Kenney R, et al. Evaluation of pinewood biochar as a carrier of bacterial strain enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol. 2014;84:192–199. doi:10.1016/j.apsoil.2014.08.001
  • Ajeng AA, Abdullah R, Ling TC, et al. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environ Technol & Innov. 2020;20:101168. doi:10.1016/j.eti.2020.101168
  • Lebrun M, Miard F, Bucci A, et al. Evaluation of direct and biochar carrier-based inoculation of bacillus sp. on As-and Pb-contaminated technosol: effect on metal (loid) availability. Salix viminalis growth, and soil microbial diversity/activity. Environ Sci Pollut Res Int. 2021;28(9):11195–11204.
  • Wang T, Sun H, Ren X, et al. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of HMs-contaminated soil. Sci Rep. 2017;7(1):1–10. doi:10.1038/s41598-016-0028-x
  • Lebrun M, Miard F, Nandillon R, et al. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere. 2019;222:810–822. doi:10.1016/j.chemosphere.2019.01.188
  • Ahiduzzaman M, Islam AS. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. SpringerPlus. 2016;5(1):1–14. doi:10.1186/s40064-016-2932-8
  • Prahas D, Kartika Y, Indraswati N, et al. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J. 2008;140(1-3):32–42. doi:10.1016/j.cej.2007.08.032
  • Bouyoucos GJ. Hydrometer method improved for making particle size analyses of soils. Agron J. 1962;54(5):464–465. doi:10.2134/agronj1962.00021962005400050028x
  • Chapman HD. Cation exchange capacity. In: Black CA, Evans DD, Ensminger LE, White JL, Clark Chapman HD, editor. Cation exchange capacity. methods of soil analysis part 2. chemical and microbiological properties. Monogr. 9.2nd ed. Madison, WI: Agronomy Society of America and Soil Science Society of America; 1965. p. 891–901.
  • Yingang LU, Jun MA, Ying TENG, et al. Effect of silicon on growth, physiology, and Cd translocation of tobacco (Nicotiana tabacum L.) in Cd-contaminated soil. Pedosphere. 2018;28(4):680–689. doi:10.1016/S1002-0160(17)60417-X
  • Shahbaz AK, Lewińska K, Iqbal J, et al. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in Ni contaminated soil amended with different biochar and zeolite ratios. J Environ Manag. 2018;218:256–270. doi:10.1016/j.jenvman.2018.04.046
  • Nie C, Yang X, Niazi NK, et al. Impact of sugarcane bagasse-derived biochar on HMs availability and microbial activity: a field study. Chemosphere. 2018;200:274–282. doi:10.1016/j.chemosphere.2018.02.134
  • Yang X, Liu J, McGrouther K, et al. Effect of biochar on the extractability of HMs (Cd, Cu. Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. 2016;23:974–984.
  • Andrey G, Rajput V, Tatiana M, et al. The role of biochar-microbe interaction in alleviating HMs toxicity in Hordeum vulgare L. grown in highly polluted soils. Appl Geochem. 2019;104:93–101. doi:10.1016/j.apgeochem.2019.03.017
  • Alaboudi KA, Ahmed B, Brodie G. Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil. Ann Agric Sci. 2019;64(1):95–102. doi:10.1016/j.aoas.2019.04.002
  • Abideen Z, Koyro HW, Huchzermeyer B, et al. Impact of a biochar or a biochar-compost mixture on water relation, nutrient uptake and photosynthesis of phragmites karka. Pedosphere. 2020;30(4):466–477. doi:10.1016/S1002-0160(17)60362-X
  • Sarkhot DV, Berhe AA, Ghezzehei T. AImpact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. J. Environ. Qual. 2012;41:1107–1114. doi:10.2134/jeq2011.0123
  • Rajput VD, Gorovtsov AV, Fedorenko GM, et al. The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environ Geochem Health. 2021;43:1477–1489. doi:10.1007/s10653-019-00505-1
  • Zhang GX, He LX, Guo XF, et al. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant. Geoderma. 2020;375:12.
  • Ouyang P, Liang CZ, Liu FS, et al. Stimulating effects of reduced graphene oxide on the growth and nitrogen fixation activity of nitrogen-fixing bacterium Azotobacter chroococcum. Chemosphere. 2022;294:133702. doi:10.1016/j.chemosphere.2022.133702
  • Zhang YF, Wang JM, et al. The effects of biochar addition on soil physicochemical properties: a review. Catena. 2021;202(2):105284.
  • Liu S, Pan Y, Jin X, et al. A novel biochar-PGPB strategy for simultaneous soil remediation and safe vegetable production. Environ Pollut. 2024;28:124254. doi:10.1016/j.envpol.2024.124254
  • Burachevskaya M, Mandzhieva S, Bauer T, et al. The effect of granular activated carbon and biochar on the availability of Cu and Zn to hordeum sativum distichum in contaminated soil. Plants. 2021;10(5):841. doi:10.3390/plants10050841
  • Shilev S, Babrikova I, Babrikov T. Consortium of plant growth-promoting bacteria improves spinach (Spinacea oleracea L.) growth under HMs stress conditions. J Chem Technol Biotechnol. 2020;95(4):932–939. doi:10.1002/jctb.6077
  • Mohamed HM, Almaroai YA. Effect of phosphate solubilizing bacteria on the uptake of HMs by corn plants in a long-term sewage wastewater treated soil. Int J Environ Sci Develop. 2017;8(5):366–371. doi:10.18178/ijesd.2017.8.5.979
  • Fuloria A, Saraswat S, Rai JPN. Effect of Pseudomonas fluorescens on metal phytoextraction from contaminated soil by Brassica juncea. Chemistry and Ecology. 2009;25(6):385–396. doi:10.1080/02757540903325096
  • Sabir M, Hanafi MM, Aziz T, et al. Comparative effect of activated carbon, pressmud and poultry manure on immobilization and concentration of metals in maize (Zea mays) grown on contaminated soil. Int J Agric Biol. 2013;15:559–564.
  • Ekere NR, Ugbor MCJ, Ihedioha JN, et al. Ecological and potential health risk assessment of HMs in soils and food crops grown in abandoned urban open waste dumpsite. J Environ Health Sci Eng. 2020;18(2):711–721. doi:10.1007/s40201-020-00497-6
  • Qi WY, Chen H, Wang Z, et al. Biochar-immobilized bacillus megaterium enhances Cd immobilization in soil and promotes brassica chinensis growth. J Hazard Mater. 2023;458:131921. doi:10.1016/j.jhazmat.2023.131921
  • Wang Q, Huang Q, Guo G, et al. Reducing bioavailability of HMs in contaminated soil and uptake by maize using organic-inorganic mixed fertilizer. Chemosphere. 2020;261:128122. doi:10.1016/j.chemosphere.2020.128122
  • Shi A, Hu Y, Zhang X, et al. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. Environ Pollut. 2023;327:121559. doi:10.1016/j.envpol.2023.121559
  • Liu L, Li J, Wu G, et al. Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, Pb uptake and soil enzyme activities under Pb stress. PeerJ. 2021;9:e11754. doi:10.7717/peerj.11754
  • Abedinzadeh M, Etesami H, Alikhani H A, et al. Combined use of municipal solid waste biochar and bacterial biosorbent synergistically decreases Cd (II) and Pb (II) concentration in edible tissue of forage maize irrigated with HMs–spiked water. Heliyon. 2020;6(8):e04688. doi:10.1016/j.heliyon.2020.e04688
  • Alaboudi KA, Ahmed A, Brodie G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus L. plant. Ann. Agric. Sci. 2018;63:123–127. doi:10.1016/j.aoas.2018.05.007
  • Sabir M, Zia-Ur-Rehman M, Aziz T, et al. Comparative residual effect of activated carbon and other organic amendments on immobilization and phytoavailability of Ni and other metals to Egyptian Clover (Trifolium alexandrinum) in contaminated soil. Int J Phytoremediation. 2020;22(7):687–693. doi:10.1080/15226514.2019.1707165
  • Shankar SS, Rai A, Ahmad A, et al. Biosynthesis of silver and gold nanoparticles from extracts of different parts of the geranium plant. Appl Nano Sci. 2004;1:69–77.
  • Ndeddy Aka RJ, Babalola OO. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and HMs (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytoremediation. 2016;18(2):200–209. doi:10.1080/15226514.2015.1073671
  • Zanganeh F, Heidari A, Sepehr A, et al. Bioaugmentation and bioaugmentation–assisted phytoremediation of HMs contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Portulaca oleracea L). Environ Sci Pollut Res Int. 2022;29(4):6040–6059.
  • Liu J, Ding Y, Ji Y, et al. Effect of maize straw biochar on bacterial communities in agricultural soil. Bull Environ Contam Toxicol. 2020;104(3):333–338. doi:10.1007/s00128-020-02793-1
  • Khalid S, Shahid M, Niazi NK, et al. A comparison of technologies for remediation of HMs contaminated soils. J Geochem Explor. 2017;182:247–268. doi:10.1016/j.gexplo.2016.11.021
  • Eissa MA. Effect of cow manure biochar on HMs uptake and translocation by zucchini (Cucurbita pepo L). Arab J Geosci. 2019;12(2):48. doi:10.1007/s12517-018-4191-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.