0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elaboration of a new Activated Carbon derived from the Crown of Oak (ACOW) to removal the toxic Iodine: Kinetic, Isotherms modelling and Thermodynamics Study

, &
Received 12 Apr 2024, Accepted 19 Jul 2024, Published online: 01 Aug 2024

References

  • Bhagat PR, Pandey AK, Acharyab R, et al. Molecular iodine preconcentration and determination in aqueous samples using poly (vinylpyrrolidone) containing membranes. Talanta. 2008;74:1313–1320.
  • Xing CM, Deng JP, Yang WT. Synthesis of antibacterial polypropylene film with surface immobilized polyvinylpyrrolidone-iodine complex. J Appl Polym Sci. 2005;97:2026–2031. doi:10.1002/app.21853
  • Lin CC. Chemical behavior of radioiodine in BWR systems. Nuclear Chemistry. 1980;42(8):1093–1099. doi:10.1016/0022-1902(80)80416-7
  • Coo LC, Martinez IS. Nafion-based optical sensor for the determination of selenium in water samples. Talanta. 2004;64(5):1317–1322.
  • da Silva Alves DC, Healy B, Pinto LAdA, et al. Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules. 2021;26(3):594), doi:10.3390/molecules26030594
  • European Environment Agency. (n.d.). https://www.eea.europa.eu/publications/textiles-in-europes-circular-economy [accessed 20 July 2022].
  • WWAP (United Nations World Water Assessment Programme). The united nations world water development report 2017: wastewater: the untapped resource. Paris: UNESCO.
  • Hethnawi A, Nassar NN, Manasrah AD, et al. Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chem Eng J. 2017;320:389–404.
  • Iqbal M, Abbas M, Nisar J, et al. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review. Chemistry International. 2019;5(1):1–80.
  • Noreen M, Shahid M, Iqbal M, et al. Measurement of cytotoxicity and heavy metal load in drains water receiving textile effluents and drinking water in vicinity of drains. Measurement (Mahwah N J). 2017;109:88–99. doi:10.1016/j.measurement.2017.05.030
  • Acar ET, Ortaboy S, Atun G. Adsorptive removal of thiazine dyes from aqueous solutions by oil shale and its oil processing residues: characterization, equilibrium, kinetics and modeling studies. Chem Eng J. 2015;276:340–348. doi:10.1016/j.cej.2015.04.089
  • Iqbal M, Abbas M, Arshad M, et al. Gamma radiation treatment for reducing cytotoxicity and mutagenicity in industrial wastewater. Pol J Environ Stud. 2015;24(6):2745–2750. doi:10.15244/pjoes/59233
  • Abbas M, Trari M. Removal of methylene blue (MB) in aqueous solution by economic adsorbent derived from apricot stone activated carbon (ASAC). Fibers and Polymers. 2020;21(4):810–820.
  • Abbas M. Photolyse of bromophenol blue in aquous solution under UV-irradiation: optimization of the parameters influencing the kinetics of degradation. Desalin Water Treat. 2021;216:167–173.
  • Abbas M. Mass transfer processes in the adsorption of lead (Pb2+) by apricot stone activated carbon (ASAC) – isotherms modeling and thermodynamic study. Protection of Metals and Physical Chemistry of Surfaces. 2021;57(4):687–698. doi:10.1134/S207020512104002X
  • Abbas M. Factors influencing the adsorption and photocatalysis of direct Red 80 (DR-80) in the presence of a TiO2 – equilibrium and kinetics modeling. J Chem Res. 2021;45(7-8):694–701. doi:10.1177/1747519821989969
  • Abbas M. Adsorption of methyl green (MG) in aqueous solution by titanium dioxide (TiO2): kinetics and thermodynamic study. Nanotechnology for Environmental Engineering. 2022;7(1):713–724.
  • Abbas M. Contribution of electrocoagulation method in the removal of fluorine ions from aqueous solution. Desalin Water Treat. 2021;226:177–183. doi:10.5004/dwt.2021.27266
  • Gao R, Hu Z, Chang X, et al. Chemically modified activated carbon with 1- acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu (II), Hg (II) and Pb (II) from water samples. J Hazard Mater 2009;172:324–329. doi:10.1016/j.jhazmat.2009.07.014
  • Hu L, Peng Y, Wu F, et al. Tubular activated carbons made from cotton stalk for dynamic adsorption of airborne toluene. Journal of the Taiwan Institute of Chemical Engineers. 2017;80:399–405.
  • Hazzaa R, Hussein M. Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environmental Technology and Innovation. 2015;4:36–51. doi:10.1016/j.eti.2015.04.002
  • Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci. 2004;279:307–313. doi:10.1016/j.jcis.2004.06.042
  • Chowdhury S, Mishra R, Saha P, et al. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination. 2011;265:159–168. doi:10.1016/j.desal.2010.07.047
  • Kumar KV, Porkodi K. Batch adsorber design for different solution volume/adsorbent mass ratios using the experimental equilibrium data with fixed solution volume/adsorbent mass ratio of malachite green onto orange peel. Dyes Pigm. 2007;74:590–594. doi:10.1016/j.dyepig.2006.03.024
  • AklM A, Mostafa MM, Bashanaini MM. S.(2016).enhanced removal of some cationic dyes from environmental samples using sulphuric acid modified pistachio shells derived activated carbon. Journal of Chromatography Separation Techniques; 7:329.
  • Wang XS, Zhou Y, Jiang Y, et al. The removal of basic dyes from aqueous solutions using agricultural by- products. J Hazard Mater 2008;157:374–385. doi:10.1016/j.jhazmat.2008.01.004
  • Abbas M. Experimental investigation of titanium dioxide as an adsorbent to remove Congo red from aqueous solution-equilibrium and kinetics modeling. Journal of Water and Reuse Desalination. 2020;10(3):251–266. doi:10.2166/wrd.2020.038
  • Abbas M. Removal of methylene blue (MB) pollutant from the textile industry by adsorption onto zeolite kinetic and thermodynamic study. J Eng Fiber Fabr. 2022;17:1–11.
  • Saka C, Teğin İ, Murtazaoğlu Ç. Phosphorus-doped porous carbon particles based on biomass for efficient adsorption performance of Cu2+ and Zn2+ from aqueous solutions: thermodynamics, isotherms, kinetics, and mechanism. Biomass Conversion and Biorefinery. 2023.
  • Kahvecioğlu K, Teğin İ, Yavuz Ö, et al. Phosphorus and oxygen co-doped carbon particles based on almond shells with hydrothermal and microwave irradiation process for adsorption of lead (II) and cadmium (II). Environmental Science and Pollution Research. 2023;30:37946–37960.
  • Saka C, Teğin I, Kahvecioğlu K. Sulphur-doped carbon particles from almond shells as cheap adsorbent for efficient Cd(II) adsorption. Diam Relat Mater. 2023;131:109542), doi:10.1016/j.diamond.2022.109542
  • Krishnan SG, Pua Fl, Zhang F. A review of magnetic solid catalyst development for sustainable biodiesel production. Biomass Bioenergy. 2021;149:106099), doi:10.1016/j.biombioe.2021.106099
  • Kaya M, Şahin Ö, Saka C. Preparation and TG/DTG, FT-IR, SEM, BET surface area, iodine number and methylene blue number analysis of activated carbon from pistachio shells by chemical activation. Int J Chem Reactor Eng. 2018;16(2):20170060.
  • Baytar O, Şahin Ö, Saka C, et al. Characterization of microwave and conventional heating on the pyrolysis of pistachio shells for the adsorption of methylene blue and iodine. Anal Lett. 2018;51(14):2205–2220. doi:10.1080/00032719.2017.1415920
  • Saka C, Şahin Ö, Adsoy H, et al. Removal of methylene blue from aqueous solutions by using cold plasma, microwave radiation and formaldehyde treated acorn shell. Sep Sci Technol. 2012;47:1542–1551. doi:10.1080/01496395.2011.652284
  • Nasiruddin M, Sarwar A. Determination of points of zero charge of natural and treated adsorbents. Surf Rev Lett. 2007;14:461–469. doi:10.1142/S0218625X07009517
  • Maazou DB, Hilma HI, Malam MM, et al. Elimination du chrome par du charbon actif élaboré et caractérisé à partir de la coque de noyau de balanite aegyptiaca. International Journal of Biological and Chemical Sciences. 2017;11(6):3050–3065. doi:10.4314/ijbcs.v11i6.39
  • Mamane OS, Zanguina A, Daou I, et al. Préparation et caractérisation de charbon actif à base de coques de noyaux de balanites Egyptiaca et de Zizyphus Mauritiana. Journal de la société ouest-africaine de chimie. 2016;41:59–67.
  • Chen X. Modeling of experimental adsorption isotherm data. Information. 2015;6:14–22. doi:10.3390/info6010014
  • Kocabiyik B, Bayrak Y. Application of a bio–waste Einkorn (TriticummonococcumL.) husks adsorbent for removal of metanil yellow and methylene blue from aqueous media with equilibrium,kinetic and thermodynamic studies. Water Air Soil Pollution. 2024;235(3):200), doi:10.1007/s11270-024-06996-8
  • Nagalakshmi TV, Emmanuel KA, Suresh Babu C, et al. Preparation of mesoporous activated carbon from jack fruit waste and development of different surface functional groups. International Letters of Chemistry, Physics and Astronomy. 2015;54:189–200. doi:10.56431/p-957378
  • Hussein FH, Halbus AF, Lafta AJ, et al. Preparation and characterization of activated carbon from Iraqi Khestawy date palm. J Chem. 2015: 1–8.
  • Islam MN, Khatton A, Sarker JS, et al. Preparation and characterization of activated carbon from jute stick by chemical activation: comparison of different activating agents. Saudi Journal of Engineering and Technology. 2022;7(2):112–117. doi:10.36348/sjet.2022.v07i02.008
  • Nazir R, Khan M, Ur Rehman R, et al. Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from mono the cabuxi folia waste seeds. Soil and Water Research. 2020;15(3):166–172. doi:10.17221/59/2019-SWR
  • Buhani S, Aditiya I, AlKausar R, et al. Production of a spirulinasp. AlgaeHybridwith a silica matrix as an effective adsorbent to absorb crystal violet and methylene blue in a solution. SustainableEnvironmentResearch. 2019;29(27):1–11.
  • Bouchelkia N, Benazouz K, Mameri A, et al. Study and characterization of H3PO4 activated carbons prepared from jujube stones for the treatment of industrial textile effluents. Processes. 2023;11:2694–2713. doi:10.3390/pr11092694
  • Liang S, Guo X, Feng N, et al. Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbent. J Hazard Mater 2010;174:756–762. doi:10.1016/j.jhazmat.2009.09.116
  • Reddad Z, Gérente C, Andres Y, et al. Adsorptionof several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol. 2002;36(9):2067–2073. doi:10.1021/es0102989
  • Eltaweil AS, Mohamed HA, Eman M, et al. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol. 2020;31(3):1253–1263.
  • Hosseini S, Choog TSY, Abdullah LC, et al. Removal of iodide ions from aqueous solution by electric arc furnace slag. Journal of Engineering Science and Technology. 2015;51:73–81.
  • Dincer AR, Guner Y, Karakaya N. Coal-based botton ash (CBBA) waste material as adsorbent for removal of textile dyes tuffs from aqueous solution. Colloid and Interface Science. 2006;293:303–311.
  • Abbas M, Harrache Z, andTrari M. Mass-transfer processes in the adsorption of crystal violet (CV) by activated carbon derived from pomegranate peels: kinetics and thermodynamic studies. J Eng Fibers Fabr. 2020;15:155892502091984–11. doi:10.1177/1558925020919847
  • Sahoo TR, Prelot B. Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. nanomaterials for the detection and removal of wastewater pollutants. Micro and Nano Technologies. 2020: 161–222.
  • Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Journal of Environmental Science and Health B. 1998;76(4):183–191.
  • Lagergren S. Zurtheorie der sogenannten adsorption gelosterstoffe, KungligaSvenskaVetenskapsakademiens. Handlingar. 1898;24:1–39.
  • Cheung CW, Porter JF, Mckay G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 2001;35:605–612. doi:10.1016/S0043-1354(00)00306-7
  • Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division American Society of Civil Engineering. 1963;89:31–60. doi:10.1061/JSEDAI.0000430
  • Kannan K, Sundaram M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons, a comparative study. Dyes Pigm. 2001;51:25–40. doi:10.1016/S0143-7208(01)00056-0
  • Cotton FA, Wilkinson G. Advanced inorganic chemistry. 5th ed New York: John Wiley & Sons; 1988.
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40:1361–1403. doi:10.1021/ja02242a004
  • Freundlich HMF. Over the adsorption in solution. J Phys Chem. 1906;57:385–470.
  • Temkin M, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. ActaPhysicochim, URSS. 1940;12:327–356.
  • Cheung CW, Porter JF, McKay G. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J Chem Technol Biotechnol. 2000;75(11):963–970. doi:10.1002/1097-4660(200011)75:11<963::AID-JCTB302>3.0.CO;2-Z
  • Guo F, Jiang X, Li X, et al. Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Mater Chem Phys. 2020;240:122240.
  • Zhang T, Yue X, Gao L, et al. Hierarchically porous bismuth oxide/layered double hydroxide composites: preparation, characterization and iodine adsorption. J Clean Prod. 2017;144:220–227. doi:10.1016/j.jclepro.2017.01.030
  • Onal Y, Akmil-Basar C, Sarıcı-Ozdemir C. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon. J Hazard Mater. 2007;146:194–203. doi:10.1016/j.jhazmat.2006.12.006
  • Laidler KJM, Meiser JH. Physical chemistry. 3rd edn Boston (MA): Houghton Mifflin; 1999.
  • Zhou X, Yu X, Hao J, et al. Comments on the calculation of the standard equilibrium constant using the Langmuir model. J Hazard Mater 2022;429:128407.
  • Zhou XY, Zhou X. The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem Eng Commun. 2014;201:1459–1467. doi:10.1080/00986445.2013.818541
  • Huang H, Sha X, Cui Y, et al. Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J Colloid Interface Sci. 2020;567:190–201. doi:10.1016/j.jcis.2020.02.015
  • Changani Z, Razmjou A, Taheri-Kafrani A, et al. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry. Chemosphere. 2020;249:126079), doi:10.1016/j.chemosphere.2020.126079
  • Sun S, Sha X, Liang J, et al. Rapid synthesis of polyimidazole functionalized MXene via microwave-irradiation assisted multi-component reaction and its iodine adsorption performance. J Hazard Mater 2021;420:126580.
  • Jha PK, Jha VK. Iodine adsorption characteristics of activated carbon obtained from Spinacia Oleracea (spinach) leaves. Mongolian Journal of Chemistry. 2020;21(47):1–11. doi:10.5564/mjc.v21i47.1249
  • Alsalbokh M, Fakeri N, Lawson S, et al. Adsorption of iodine from aqueous solutions by aminosilane-grafted mesoporous alumina. Chem Eng J. 2021;415:128968), doi:10.1016/j.cej.2021.128968
  • Kentjono L, Liu JC, Chang WC, et al. Removal of boron and iodine from optoelectronic wastewater using Mg–Al (NO3) layered double hydroxide. Desalination. 2010;262:280–283. doi:10.1016/j.desal.2010.06.015
  • Madrakian T, Afkhami A, Zolfigol MA, et al. Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples. Nano-Micro Letters. 2012;4(1):57–63. doi:10.1007/BF03353693
  • Al-Fulaiti B, El-Shafey EI, Al Kindi SHS, et al. Adsorption of iodine from aqueous solution on modified silica gel with cyclodextrin derivatives. Pol J Environ Stud. 2022;31(6):1–12.
  • Kaghazchi T, Kolur NA, Sabet RH. Recovery of iodine with activated carbon from dilute aqueous solutions. Afinidad -Barcelona-66. 2009;542:338–343.
  • Osman AI, El-Monaem EMA, Elgarahy AM. Methods to prepare biosorbents and magnetic sorbents for water treatment: a review. Environ Chem Lett. 2023;21:2337–2398. doi:10.1007/s10311-023-01603-4
  • Ma H, Zhang X-F, Wang Z, et al. Flexible cellulose foams with a high loading of attapulgitenanorods for Cu2+ ions removal. Colloids Surf. A Physicochem. Eng. Asp. 2021;612:126038), doi:10.1016/j.colsurfa.2020.126038
  • Vakili M, Gholami F, Zwain HM, et al. Treatment of As(III)-contaminated food waste using alkali treatment and its potential application for methylene blue removal from aqueous solutions. J. Water Proc. Eng. 2023;55:104100), doi:10.1016/j.jwpe.2023.104100
  • Vakili M, Deng S, Cagnetta G, et al. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: a review. Sep Purif Technol 2019;224:373–387. doi:10.1016/j.seppur.2019.05.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.