52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification and validation of three potential biomarkers and immune microenvironment for in severe asthma in microarray and single-cell datasets

, MD, , MD, , MD, , MD, , PhD & , PhD
Received 10 Mar 2024, Accepted 22 Mar 2024, Published online: 07 May 2024

References

  • Brusselle GG, Koppelman GH. Biologic therapies for severe asthma. N Engl J Med. 2022;386(2):157–171. doi:10.1056/NEJMra2032506.
  • Schoettler N, Strek ME. Recent advances in severe asthma: from phenotypes to personalized medicine. Chest. 2020;157(3):516–528. doi:10.1016/j.chest.2019.10.009.
  • Wenzel SE. Severe adult asthmas: integrating clinical features, biology, and therapeutics to improve outcomes. Am J Respir Crit Care Med. 2021;203(7):809–821. doi:10.1164/rccm.202009-3631CI.
  • Menzies-Gow A, Busse WW, Castro M, Jackson DJ. Prevention and treatment of asthma exacerbations in adults. J Allergy Clin Immunol Pract. 2021;9(7):2578–2586. doi:10.1016/j.jaip.2021.05.016.
  • Israel E, Reddel HK. Severe and difficult-to-treat asthma in adults. N Engl J Med. 2017;377(10):965–976. doi:10.1056/NEJMra1608969.
  • Ortega G, Tongchinsub P, Carr T. Combination biologic therapy for severe persistent asthma. Ann Allergy Asthma Immunol. 2019;123(3):309–311. doi:10.1016/j.anai.2019.06.013.
  • Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(9):2521–2522. doi:10.1016/j.cell.2021.04.019.
  • Mims JW. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol. 2015;5(Suppl 1): S2–S6. doi:10.1002/alr.21609.
  • Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1–12. doi:10.1016/j.jaci.2019.05.031.
  • Tang S, Du X, Yuan L, Xiao G, Wu M, Wang L, Wu S, Duan Z, Xiang Y, Qu X, et al. Airway epithelial ITGB4 deficiency in early life mediates pulmonary spontaneous inflammation and enhanced allergic immune response. J Cell Mol Med. 2020;24(5):2761–2771. doi:10.1111/jcmm.15000.
  • Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–692. doi:10.1038/nm.2737.
  • Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis. Front Immunol. 2020;11:761. doi:10.3389/fimmu.2020.0076.1.
  • Ray A, Raundhal M, Oriss TB, Ray P, Wenzel SE. Current concepts of severe asthma. J Clin Invest. 2016;126(7):2394–2403. doi:10.1172/JCI84144.
  • Kocks JW,Cao Hui,Holzhauer B,Kaplan A,FitzGerald JM,Kostikas K,Price D,Reddel HK,Tsiligianni I,Vogelmeier CF, et al. Diagnostic performance of a machine learning algorithm (Asthma/Chronic Obstructive Pulmonary Disease [COPD] Differentiation Classification) tool versus primary care physicians and pulmonologists in asthma, COPD, and asthma/COPD overlap. J Allergy Clin Immunol Pract. 2023;11(5):1463–1474.e3. doi:10.1016/j.jaip.2023.01.017.
  • Kim DE, Lee Y, Kim M, Lee S, Jon S, Lee S-H. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials. 2017;140:37–44. doi:10.1016/j.biomaterials.2017.06.014.
  • Kim MS, Cho K-A, Cho YJ, Woo S-Y. Effects of interleukin-9 blockade on chronic airway inflammation in murine asthma models. Allergy Asthma Immunol Res. 2013;5(4):197–206. doi:10.4168/aair.2013.5.4.197.
  • Porsbjerg C, Melén E, Lehtimäki L, Shaw D. Asthma. Lancet. 2023;401(10379):858–873. doi:10.1016/S0140-6736(22)02125-0.
  • Bourdin A, Bjermer L, Brightling C, Brusselle GG, Chanez P, Chung KF, Custovic A, Diamant Z, Diver S, Djukanovic R, et al. ERS/EAACI statement on severe exacerbations in asthma in adults: facts, priorities and key research questions. Eur Respir J. 2019;54(3):1900900. doi:10.1183/13993003.00900-2019.
  • Yuan L, Liu H, Du X, Yao Y, Qin L, Xia Z, Zhou K, Wu X, Yuan Y, Qing B, et al. Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol. 2023;151(2):431.e16–446.e16. doi:10.1016/j.jaci.2022.09.032.
  • Zhang Q, Illing R, Hui CK, Downey K, Carr D, Stearn M, Alshafi K, Menzies-Gow A, Zhong N, Fan Chung K. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir Res. 2012;13(1):35. doi:10.1186/1465-9921-13-35.
  • Wang X, Quinn PJ. Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res. 2010;49(2):97–107. doi:10.1016/j.plipres.2009.06.002.
  • Trautmann A, Schmid-Grendelmeier P, Krüger K, Crameri R, Akdis M, Akkaya A, Bröcker E-B, Blaser K, Akdis CA. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J Allergy Clin Immunol. 2002;109(2):329–337. doi:10.1067/mai.2002.121460.
  • Solarewicz-Madejek K, Basinski TM, Crameri R, Akdis M, Akkaya A, Blaser K, Rabe KF, Akdis CA, Jutel M. T cells and eosinophils in bronchial smooth muscle cell death in asthma. Clin Exp Allergy. 2009;39(6):845–855. doi:10.1111/j.1365-2222.2009.03244.x.
  • Huynh M-LN, Malcolm KC, Kotaru C, Tilstra JA, Westcott JY, Fadok VA, Wenzel SE. Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am J Respir Crit Care Med. 2005;172(8):972–979. doi:10.1164/rccm.200501-035OC.
  • Palmer S, Chen YH. Bcl-3, a multifaceted modulator of NF-kappaB-mediated gene transcription. Immunol Res. 2008;42(1-3):210–218. doi:10.1007/s12026-008-8075-4.
  • Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–558. doi:10.1038/nri.2017.52.
  • Carr D, Zein A, Coulombe J, Jiang T, Cabrita MA, Ward G, Daneshmand M, Sau A, Pratt MAC. Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology. Breast Cancer Res. 2022;24(1):40. doi:10.1186/s13058-022-01536-w.
  • Walker JS, Hing ZA, Sher S, Cronin J, Williams K, Harrington B, Skinner JN, Cempre CB, Gregory CT, Pan A, et al. Rare t(X;14)(q28;q32) translocation reveals link between MTCP1 and chronic lymphocytic leukemia. Nat Commun. 2021;12(1):6338. doi:10.1038/s41467-021-26400-x.
  • Corn RA, Hunter C, Liou H-C, Siebenlist U, Boothby MR. Opposing roles for RelB and Bcl-3 in regulation of T-box expressed in T cells, GATA-3, and Th effector differentiation. J Immunol. 2005;175(4):2102–2110. doi:10.4049/jimmunol.175.4.2102.
  • Duan L, Liu D, Chen H, Mintz MA, Chou MY, Kotov DI, Xu Y, An J, Laidlaw BJ, Cyster JG. Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity. 2021;54(10):2256–2272.e6. doi:10.1016/j.immuni.2021.08.028.
  • Jaiswal H, Ciucci T, Wang H, Tang W, Claudio E, Murphy PM, Bosselut R, Siebenlist U. The NF-κB regulator Bcl-3 restricts terminal differentiation and promotes memory cell formation of CD8+ T cells during viral infection. PLOS Pathog. 2021;17(1):e1009249. doi:10.1371/journal.ppat.1009249.
  • Corradetti MN, Inoki K, Guan K-L. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem. 2005;280(11):9769–9772. doi:10.1074/jbc.C400557200.
  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893–2904. doi:10.1101/gad.1256804.
  • Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002;10(5):995–1005. doi:10.1016/s1097-2765(02)00706-2.
  • Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020;1867(6):118677. doi:10.1016/j.bbamcr.2020.118677.
  • Zhu H, Gao W, Li X, Yu L, Luo D, Liu Y, Yu X. S100A14 promotes progression and gemcitabine resistance in pancreatic cancer. Pancreatology. 2021;21(3):589–598. doi:10.1016/j.pan.2021.01.011.
  • Min H-Y, Cho J, Sim JY, Boo H-J, Lee J-S, Lee S-B, Lee Y-J, Kim SJ, Kim K-P, Park I-J, et al. S100A14: a novel negative regulator of cancer stemness and immune evasion by inhibiting STAT3-mediated programmed death-ligand 1 expression in colorectal cancer. Clin Transl Med. 2022;12(7):e986. doi:10.1002/ctm2.986.
  • Pietas A, Schlüns K, Marenholz I, Schäfer BW, Heizmann CW, Petersen I. Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family. Genomics. 2002;79(4):513–522. doi:10.1006/geno.2002.6744.
  • Hosoki K, Ying S, Corrigan C, Qi H, Kurosky A, Jennings K, Sun Q, Boldogh I, Sur S. Analysis of a panel of 48 cytokines in BAL fluids specifically identifies IL-8 levels as the only cytokine that distinguishes controlled asthma from uncontrolled asthma, and correlates inversely with FEV1. PLOS One. 2015;10(5):e0126035. doi:10.1371/journal.pone.0126035.
  • Da Kim H, Gu A, Lee J-S, Yang EJ, Kashif A, Hong MH, Kim G, Park BS, Lee SJ, Kim IS. Suppressive effects of S100A8 and S100A9 on neutrophil apoptosis by cytokine release of human bronchial epithelial cells in asthma. Int J Med Sci. 2020;17(4):498–509. doi:10.7150/ijms.37833.
  • Uddin M, Lau LC, Seumois G, Vijayanand P, Staples KJ, Bagmane D, Cornelius V, Dorinsky P, Davies DE, Djukanović R. EGF-induced bronchial epithelial cells drive neutrophil chemotactic and anti-apoptotic activity in asthma. PLOS One. 2013;8(9):e72502. doi:10.1371/journal.pone.0072502.
  • Elieh Ali Komi D, Bjermer L. Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol. 2019;56(2):234–247. doi:10.1007/s12016-018-8720-1.
  • Lowery JW, Rosen V. The BMP pathway and its inhibitors in the skeleton. Physiol Rev. 2018;98(4):2431–2452. doi:10.1152/physrev.00028.2017.
  • Kariyawasam HH, Xanthou G, Barkans J, Aizen M, Kay AB, Robinson DS. Basal expression of bone morphogenetic protein receptor is reduced in mild asthma. Am J Respir Crit Care Med. 2008;177(10):1074–1081. doi:10.1164/rccm.200709-1376OC.
  • Hong Y, Choi JH, Hong MH, Kim G, Lee J-S, Woo R-S, Yang EJ, Kim IS. Neuregulin-1 suppresses anti-apoptotic effect of Der p 38 on neutrophils by inhibition of cytokine secretion. Mol Cell Toxicol. 2023;19(4):857–867. doi:10.1007/s13273-023-00375-w.
  • Kettle R, Simmons J, Schindler F, Jones P, Dicker T, Dubois G, Giddings J, van Heeke G, Jones CE. Regulation of neuregulin 1beta1-induced MUC5AC and MUC5B expression in human airway epithelium. Am J Respir Cell Mol Biol. 2010;42(4):472–481. doi:10.1165/rcmb.2009-0018OC.
  • Finigan JH, Faress JA, Wilkinson E, Mishra RS, Nethery DE, Wyler D, Shatat M, Ware LB, Matthay MA, Mason R, et al. Neuregulin-1-human epidermal receptor-2 signaling is a central regulator of pulmonary epithelial permeability and acute lung injury. J Biol Chem. 2011;286(12):10660–10670. doi:10.1074/jbc.M110.208041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.