556
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Acoustic biomarkers in asthma: a systematic review

, BScORCID Icon, , MBBS BScORCID Icon & , MBBS BScORCID Icon
Received 18 Jan 2024, Accepted 13 Apr 2024, Published online: 07 May 2024

References

  • Vasudevan S, Saha A, Tarver ME, Patel B. Digital biomarkers: convergence of digital health technologies and biomarkers. NPJ Digit Med 2022;5(1):36. doi:10.1038/s41746-022-00583-z.
  • Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018;243(3):213–221. doi:10.1177/1535370217750088.
  • Fraccaro P, Beukenhorst A, Sperrin M, Harper S, Palmier-Claus J, Lewis S, Van der Veer SN, Peek N. Digital biomarkers from geolocation data in bipolar disorder and schizophrenia: a systematic review. J Am Med Inform Assoc 2019;26(11):1412–1420. doi:10.1093/jamia/ocz043.
  • Piau A, Wild K, Mattek N, Kaye J. Current state of digital biomarker technologies for real-life, home-based monitoring of cognitive function for mild cognitive impairment to mild Alzheimer disease and implications for clinical care: systematic review. J Med Internet Res 2019;21(8):e12785. doi:10.2196/12785.
  • Youn BY, Ko Y, Moon S, Lee J, Ko SG, Kim JY. Digital biomarkers for neuromuscular disorders: a systematic scoping review. Diagnostics 2021;11(7):1275–1279. doi:10.3390/diagnostics11071275.
  • Juen J, Cheng Q, Schatz B. A natural walking monitor for pulmonary patients using mobile phones. IEEE J Biomed Health Inform 2015;19(4):1399–1405. doi:10.1109/JBHI.2015.2427511.
  • Watsjold B, Ilgen J, Monteiro S, Sibbald M, Goldberger ZD, Thompson WR, Norman G. Do you hear what you see? Utilizing phonocardiography to enhance proficiency in cardiac auscultation. Perspect Med Educ 2021;10(3):148–154. doi:10.1007/s40037-020-00646-5.
  • Durand LG, Pibarot P. Review: most recent advancements in digital signal processing of the phonocardiogram. Crit Rev Biomed Eng 2017;45(1–6):453–509. doi:10.1615/CritRevBiomedEng.v45.i1-6.170.
  • Du X, Allwood G, Webberley KM, Osseiran A, Marshall BJ. Bowel sounds identification and migrating motor complex detection with low-cost piezoelectric acoustic sensing device. Sensors 2018;18(12):4240. doi:10.3390/s18124240.
  • Whittingslow DC, Jeong HK, Ganti VG, Kirkpatrick NJ, Kogler GF, Inan OT. Acoustic emissions as a non-invasive biomarker of the structural health of the knee. Ann Biomed Eng 2020;48(1):225–235. doi:10.1007/s10439-019-02333-x.
  • Gabaldon-Figueira JC, Brew J, Doré DH, Umashankar N, Chaccour J, Orrillo V, Tsang LY, Blavia I, Fernández-Montero A, Bartolomé J, et al. Digital acoustic surveillance for early detection of respiratory disease outbreaks in Spain: a protocol for an observational study. BMJ Open 2021;11(7):e051278. doi:10.1136/bmjopen-2021-051278.
  • Imran A, Posokhova I, Qureshi HN, Masood U, Riaz MS, Ali K, John CN, Hussain MI, Nabeel M. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform Med Unlocked 2020;20:100378. doi:10.1016/j.imu.2020.100378.
  • Laguarta J, Hueto F, Subirana B. COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J Eng Med Biol 2020;1:275–281. doi:10.1109/OJEMB.2020.3026928.
  • Pinkas G, Karny Y, Malachi A, Barkai G, Bachar G, Aharonson V. SARS-CoV-2 detection from voice. IEEE Open J Eng Med Biol 2020;1:268–274. doi:10.1109/OJEMB.2020.3026468.
  • Andreu-Perez J, Perez-Espinosa H, Timonet E, Kiani M, Giron-Perez MI, Benitez-Trinidad AB, Jarchi D, Rosales-Perez A, Gatzoulis N, Reyes-Galaviz OF, et al. A generic deep learning based cough analysis system from clinically validated samples for point-of-need Covid-19 test and severity levels. IEEE Trans Serv Comput 2022;15(3):1220–1232. doi:10.1109/TSC.2021.3061402.
  • Santosh KC, Rasmussen N, Mamun M, Aryal S. A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19? PeerJ Comput Sci 2022;8:e958. doi:10.7717/peerj-cs.958.
  • Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A. Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of COPD. Sensors 2015;15(10):26978–26996. doi:10.3390/s151026978.
  • Boeselt T, Kroenig J, Lueders T-S, Koehler N, Beutel B, Hildebrandt O, Koehler U, Conradt R. Acoustic monitoring of night-time respiratory symptoms in 14 patients with exacerbated COPD over a 3-week period. Int J Chron Obstruct Pulmon Dis 2022;17:2977–2986. doi:10.2147/COPD.S377069.
  • Crooks MG, den Brinker A, Hayman Y, Williamson JD, Innes A, Wright CE, Hill P, Morice AH. Continuous cough monitoring using ambient sound recording during convalescence from a COPD exacerbation. Lung 2017;195(3):289–294. doi:10.1007/s00408-017-9996-2.
  • Windmon A, Minakshi M, Bharti P, Chellappan S, Johansson M, Jenkins BA, Athilingam PR. TussisWatch: A smart-phone system to identify cough episodes as early symptoms of chronic obstructive pulmonary disease and congestive heart failure. IEEE J Biomed Health Inform 2019;23(4):1566–1573. doi:10.1109/JBHI.2018.2872038.
  • Mor R, Kushnir I, Meyer JJ, Ekstein J, Ben-Dov I. Breath sound distribution images of patients with pneumonia and pleural effusion. Respir Care 2007;52(12):1753–1760.
  • Rao A, Ruiz J, Bao C, Roy S. Tabla: a proof-of-concept auscultatory percussion device for low-cost pneumonia detection. Sensors 2018;18(8):2689. doi:10.3390/s18082689.
  • Boesch M, Rassouli F, Baty F, Schwärzler A, Widmer S, Tinschert P, Shih I, Cleres D, Barata F, Fleisch E, et al. Smartphone-based cough monitoring as a near real-time digital pneumonia biomarker. ERJ Open Res 2023;9(3):00518-2022. doi:10.1183/23120541.00518-2022.
  • Kim T, Kim JW, Lee K. Detection of sleep disordered breathing severity using acoustic biomarker and machine learning techniques. Biomed Eng Online 2018;17(1):16. doi:10.1186/s12938-018-0448-x.
  • Rosenwein T, Dafna E, Tarasiuk A, Zigel Y. Breath-by-breath detection of apneic events for OSA severity estimation using non-contact audio recordings. Conf Proc IEEE Eng Med Biol Soc 2015;2015:7688–7691.
  • Cheng S, Wang C, Yue K, Li R, Shen F, Shuai W, Li W, Dai L. Automated sleep apnea detection in snoring signal using long short-term memory neural networks. Biomed Signal Process Control 2022;71:103238. doi:10.1016/j.bspc.2021.103238.
  • Marsden PA, Satia I, Ibrahim B, Woodcock A, Yates L, Donnelly I, Jolly L, Thomson NC, Fowler SJ, Smith JA, et al. Objective cough frequency, airway inflammation, and disease control in asthma. Chest 2016;149(6):1460–1466. doi:10.1016/j.chest.2016.02.676.
  • Tinschert P, Rassouli F, Barata F, Steurer-Stey C, Fleisch E, Puhan MA, Kowatsch T, Brutsche MH. Nocturnal cough and sleep quality to assess asthma control and predict attacks. J Asthma Aller 2020;13:669–678. doi:10.2147/jaa.s278155.
  • Rassouli F, Tinschert P, Barata F, Steurer-Stey C, Fleisch E, Puhan MA, Baty F, Kowatsch T, Brutsche MH. Characteristics of asthma-related nocturnal cough: a potential new digital biomarker. J Asthma Aller 2020;13:649–657. doi:10.2147/JAA.S278119.
  • Kraman SS, Pasterkamp H, Wodicka GR. Smart devices are poised to revolutionize the usefulness of respiratory sounds. Chest 2023;163(6):1519–1528. doi:10.1016/j.chest.2023.01.024.
  • Mukherjee M, Stoddart A, Gupta RP, Nwaru BI, Farr A, Heaven M, Fitzsimmons D, Bandyopadhyay A, Aftab C, Simpson CR, et al. The epidemiology, healthcare and societal burden and costs of asthma in the UK and its member nations: analyses of standalone and linked national databases. BMC Med 2016;14(1):113. doi:10.1186/s12916-016-0657-8.
  • Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy JV, et al. After asthma: redefining airways diseases. Lancet 2018;391(10118):350–400. doi:10.1016/S0140-6736(17)30879-6.
  • Demoly P, Paggiaro P, Plaza V, Bolge SC, Kannan H, Sohier B, Adamek L. Prevalence of asthma control among adults in France, Germany, Italy, Spain and the UK. Eur Respir Rev 2009;18(112):105–112. doi:10.1183/09059180.00001209.
  • Normansell R, Kew KM, Stovold E. Interventions to improve adherence to inhaled steroids for asthma. Cochrane Database Syst Rev 2017;4(4):CD012226. doi:10.1002/14651858.CD012226.pub2.
  • Chongmelaxme B, Chaiyakunapruk N, Dilokthornsakul P. Incorporating adherence in cost-effectiveness analyses of asthma: a systematic review. J Med Econ 2019;22(6):554–566. doi:10.1080/13696998.2019.1572014.
  • Anam K, Al-Jumaily AA. Active exoskeleton control systems: state of the art. Procedia Eng 2012;41:988–994. doi:10.1016/j.proeng.2012.07.273.
  • Bårnes CB, Ulrik CS. Asthma and adherence to inhaled corticosteroids: current status and future perspectives. Respir Care 2015;60(3):455–468. doi:10.4187/respcare.03200.
  • Armeftis C, Gratziou C, Siafakas N, Katsaounou P, Pana ZD, Bakakos P. An update on asthma diagnosis. J Asthma 2023;60(12):2104–2110. doi:10.1080/02770903.2023.2228911.
  • Tinschert P, Groh M. Resmonics I acoustic artificial intelligence for respiratory health and infection prevention. Resmonics [last accessed 29 February 2024]. https://www.resmonics.ai/.
  • Boner AL, Piacentini GL, Peroni DG, Irving CS, Goldstein D, Gavriely N, Godfrey S. Children with nocturnal asthma wheeze intermittently during sleep. J Asthma 2010;47(3):290–294. doi:10.3109/02770900903497188.
  • Nabi FG, Sundaraj K, Lam CK. Asthma severity identification from pulmonary acoustic signal for computerized decision support system. J Pak Med Assoc 2021;71(1(A):41–46. doi:10.47391/JPMA.156.
  • Wieczorek K, Anath S, Velazquez-Pimentel D. PROSPERO registration [last accessed 13 January 2024]. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=473584.
  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339(jul21 1):b2700–b2700. doi:10.1136/bmj.b2700.
  • University of Bristol. QUADAS-2 [last accessed 21 February 2024]. https://www.bristol.ac.uk/population-health-sciences/projects/quadas/quadas-2/.
  • Porter P, Brisbane J, Abeyratne U, Bear N, Claxton S. A smartphone-based algorithm comprising cough analysis and patient-reported symptoms identifies acute exacerbations of asthma: a prospective, double blind, diagnostic accuracy study. J Asthma 2023;60(2):368–376. doi:10.1080/02770903.2022.2051546.
  • Barata F, Tinschert P, Rassouli F, Steurer-Stey C, Fleisch E, Puhan MA, Brutsche M, Kotz D, Kowatsch T. Automatic recognition, segmentation, and sex assignment of nocturnal asthmatic coughs and cough epochs in smartphone audio recordings: observational field study. J Med Internet Res 2020;22(7):e18082. doi:10.2196/18082.
  • Porter P, Abeyratne U, Swarnkar V, Tan J, Ng T-W, Brisbane JM, Speldewinde D, Choveaux J, Sharan R, Kosasih K, et al. A prospective multicentre study testing the diagnostic accuracy of an automated cough sound centred analytic system for the identification of common respiratory disorders in children. Respir Res 2019;20(1):81. doi:10.1186/s12931-019-1046-6.
  • Khan SM, Qaiser N, Shaikh SF, Hussain MM. Design analysis and human tests of foil-based wheezing monitoring system for asthma detection. IEEE Trans Electron Dev 2020;67(1):249–257. doi:10.1109/TED.2019.2951580.
  • Ra HK, Salekin A, Yoon HJ, et al. AsthmaGuide: an asthma monitoring and advice ecosystem. In 2016 IEEE Wireless Health (WH); 2016: 1–8. doi:10.1109/WH.2016.7764567.
  • Grzywalski T, Piecuch M, Szajek M, Bręborowicz A, Hafke-Dys H, Kociński J, Pastusiak A, Belluzzo R. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination. Eur J Pediatr 2019;178(6):883–890. doi:10.1007/s00431-019-03363-2.
  • Habukawa C, Ohgami N, Arai T, Makata H, Tomikawa M, Fujino T, Manabe T, Ogihara Y, Ohtani K, Shirao K, et al. Wheeze recognition algorithm for remote medical care device in children: validation study. JMIR Pediatr Parent 2021;4(2):e28865. doi:10.2196/28865.
  • Nabi FG, Sundaraj K, Lam CK, Palaniappan R. Characterization and classification of asthmatic wheeze sounds according to severity level using spectral integrated features. Comput Biol Med 2019;104:52–61. doi:10.1016/j.compbiomed.2018.10.035.
  • Taylor TE, Lacalle Muls H, Costello RW, Reilly RB. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence. PLOS One 2018;13(1):e0191330. doi:10.1371/journal.pone.0191330.
  • Holmes MS, D'arcy S, Costello RW, Reilly RB. Acoustic analysis of inhaler sounds from community-dwelling asthmatic patients for automatic assessment of adherence. IEEE J Transl Eng Health Med 2014;2:2700210–2700210. doi:10.1109/JTEHM.2014.2310480.
  • Holmes MS, Le Menn M, D’Arcy S. Automatic identification and accurate temporal detection of inhalations in asthma inhaler recordings. Conf Proc IEEE Eng Med Biol Soc 2012;2012:2595–2598.
  • Kothalawala DM, Kadalayil L, Weiss VBN, Kyyaly MA, Arshad SH, Holloway JW, Rezwan FI. Prediction models for childhood asthma: a systematic review. Pediatr Allergy Immunol 2020;31(6):616–627. doi:10.1111/pai.13247.
  • Yu G, Li Z, Li S, Liu J, Sun M, Liu X, Sun F, Zheng J, Li Y, Yu Y, et al. The role of artificial intelligence in identifying asthma in pediatric inpatient setting. Ann Transl Med 2020;8(21):1367–1367. doi:10.21037/atm-20-2501a.
  • Huang Y, Meng S, Zhang Y, Wu S, Zhang Y, Zhang Y, Ye Y, Wei Q, Zhao N, Jiang J, et al. The respiratory sound features of COVID-19 patients fill gaps between clinical data and screening methods. bioRxiv (published online April 10, 2020). doi:10.1101/2020.04.07.20051060.
  • Chowdhury MEH, Khandakar A, Alzoubi K, Mansoor S, M Tahir A, Reaz MBI, Al-Emadi N. Real-time smart-digital stethoscope system for heart diseases monitoring. Sensors 2019;19(12):2781. doi:10.3390/s19122781.
  • Chan AHY, Pleasants RA, Dhand R, Tilley SL, Schworer SA, Costello RW, Merchant R. Digital inhalers for asthma or chronic obstructive pulmonary disease: a scientific perspective. Pulm Ther 2021;7(2):345–376. doi:10.1007/s41030-021-00167-4.
  • Taylor TE, Zigel Y, Egan C, Hughes F, Costello RW, Reilly RB. Objective assessment of patient inhaler user technique using an audio-based classification approach. Sci Rep 2018;8(1):2164. doi:10.1038/s41598-018-20523-w.
  • Larson EC, Lee T, Liu S, Rosenfeld M, Patel SN. Accurate and privacy preserving cough sensing using a low-cost microphone. In proceedings of the 13th International Conference on Ubiquitous Computing. UbiComp’11. Association for Computing Machinery; 2011: 375–384. doi:10.1145/2030112.2030163.
  • Barata F, Kipfer K, Weber M, Tinschert P, Fleisch E, Kowatsch T. Towards device-agnostic mobile cough detection with convolutional neural networks. 2019 IEEE International Conference on Healthcare Informatics (ICHI) (published online 2019). doi:10.1109/ICHI.2019.8904554.
  • Zia A, Brassart A, Thomas S, Ye F, Stephenson JJ, Mullins CD, Jones CA. Patient-centric structural determinants of adherence rates among asthma populations: exploring the potential of patient activation and encouragement tool TRUSTR to improve adherence. J Health Econ Outcomes Res 2020;7(2):111–122. doi:10.36469/jheor.2020.13607.